
OAG I - OAGIS 9 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

.

Open Applications Group - Standards Document

OAGIS 9 Naming and Design Rules Standard

Effective Date: September 30, 2005

With Adherence to the:
 UN/CEFACT XML Naming and Design Rules

Draft 1.2_8 sep September 2005

Authors:
Garret Minakawa – Oracle Corporation

Satish Ramanathan – MRO Software
Michael Rowell - OAGi

Reviewers:

David Connelly – OAGi
Steffen Fohn, ADP

Kurt Kanaskie – Lucent Technologies
Michelle Vidanes – STAR

Joe Zhou – Xtensible Solutions

Document Number: 060315-v.7

OAG I - OAGIS 9 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

NOTICE

The information contained in this document is subject to change without notice.

The material in this document is published by the Open Applications Group, Inc. for
evaluation. Publication of this document does not represent a commitment to implement
any portion of this specification in the products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
OPEN APPLICATIONS GROUP, INC. MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Open Applications Group, Inc. shall not be liable for errors contained herein
or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

This document contains proprietary information, which is protected by copyright. All
Rights Reserved. No part of this work covered by copyright hereon may be reproduced
or used in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems—without
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is
subject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data
and Computer Software Clause at DFARS 252.227.7013.

Copyright © 1995-2006 by Open Applications Group, Incorporated

For more information, contact:

Open Applications Group, Inc.
P.O. Box 4897
Marietta, Georgia 30061 USA
Telephone: +1 678 715 7588
Internet: http://www.openapplications.org

OAG I - OAGIS 9 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

Table of Contents 1
 2

1.0 Introduction .. 6 3

1.1 Support for UN/CEFACT Standards ... 6 4

1.2 Scope and Focus ... 6 5

1.3 OAGi Approach .. 6 6

1.4 Terminology and Notation... 7 7

1.5 Related Documents .. 8 8

1.6 Guiding Principles... 8 9

1.7 Conformance .. 8 10

2.0 OAGIS XML Constructs ... 8 11

2.1 Relationship to other standards .. 9 12
2.1.1 XML Core Technologies ... 10 13
2.1.2 Core Component Technical Specifications - CCTS 11 14
2.1.3 UN/CEFACT ATG2 Naming and Design Rules – NDR 12 15
2.1.4 UN/CEFACT Harmonized Core Components – TBG17 12 16
2.1.5 ISO20022 (UNIFI Financial Standard) – IST Harmonization 14 17
2.1.6 OMG UML .. 14 18

2.2 Naming and Modeling Rules ... 15 19
2.2.1 Module Naming .. 17 20

2.3 Reusability Scheme .. 18 21

2.4 Modularity Model .. 22 22
2.4.1 UN/CEFACT Modularity Model ... 22 23
2.4.2 OAGIS Schema Modularity... 23 24
2.4.3 BOD – Root Schema .. 26 25
2.4.4 Noun, Components, Fields, Meta - Internal Schema......................... 29 26
2.4.5 External Schema .. 30 27
2.4.5.1 Core Component Type Schema Module .. 31 28
2.4.5.2 Unqualified Data Type Schema Module ... 31 29
2.4.5.3 Qualified Data Type Schema Module .. 32 30
2.4.5.4 Reusable Aggregate Business Information Entity Schema Module 33 31
2.4.5.5 Code List Schema Modules ... 34 32
2.4.5.6 Identifier List Schema Module ... 34 33
2.4.5.7 Other Standards Body Aggregate Business Information Entity 34
Schema Modules .. 35 35

2.5 Namespace Scheme .. 36 36
2.5.1 OAGIS Namespace Scheme .. 36 37
2.5.2 Declaring Namespace .. 38 38
2.5.3 Namespace Persistence ... 38 39
2.5.4 Namespace Uniform Resource Identifiers .. 39 40
2.5.5 Namespace Constraint ... 41 41

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

4

2.5.6 Schema Namespace Tokens .. 42 42

2.6 Schema Location .. 42 43

2.7 Versioning .. 44 44
2.7.1 Version Compatibility .. 45 45
2.7.2 Major Versions ... 45 46
2.7.3 Minor Versions ... 46 47

3.0 General XML Schema Conventions .. 48 48

3.1 Schema Construct .. 48 49
3.1.1 Constraints on Schema Construction ... 49 50

3.2 Attribute and Element Declarations .. 50 51
3.2.1 Attributes .. 51 52
3.2.1.1 Usage of Attributes .. 51 53
3.2.1.2 Constraints on Attribute Declarations... 51 54
3.2.2 Elements .. 52 55
3.2.2.1 Element Declaration .. 52 56
3.2.2.2 Constraints on Element Declarations ... 52 57

3.3 Type Definitions .. 53 58
3.3.1 Simple Type Definitions .. 53 59
3.3.2 Complex Type Definitions ... 53 60

3.4 Use of Extension and Restriction .. 55 61
3.4.1 Derivation by Extension .. 55 62
3.4.2 Derivation by Restriction ... 55 63

3.5 Annotation .. 56 64

4.0 Schema Modules .. 57 65

4.1 BOD ... 57 66
4.1.1 Schema Construct .. 57 67
4.1.2 Namespace Scheme .. 59 68

5.0 OAGIS 9.0 Architecture.. 60 69

5.1 Design Considerations for OAGIS 9.0 .. 60 70
5.1.1 Address Non-Determinism.. 60 71
5.1.1.1 The Non-Determinism Problem in a Nutshell 60 72
5.1.2 Addressing the Non-Determinism ... 61 73

Appendix A – OAGi Accepted Acronyms and Abbreviations 63 74

 75
76

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

5

OAGIS 9 Naming and Design Rules Standard 77

Abstract 78

The Open Applications Group Integration Specification (OAGIS) provides a canonical 79
business language for vertical industries. Individual organizations and entire supply chains 80
may further extend the specification in ways that meet their own unique needs. It is 81
important for OAGi to define the naming, design rules and guidelines used for OAGIS in 82
such a manner that these organizations may follow them for their extension. 83

This specification provides a means to identify, capture and maximize the re-use of 84
business information expressed as XML Schema components within OAGIS and OAGIS 85
extensions in order to support information interoperability across integrated environments. 86

Thank you to all who have contributed to the design, construction, and reviewing of the 87
document. If we have missed anyone in our credits, we apologize to you. 88

This document will continue to grow as more details are added and updated. 89

 90

91

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

6

1.0 INTRODUCTION 92

This “OAGi – OAGIS 9.0 XML Naming and Design Rules Standard (OAGIS NDR 93
Standard),” defines the naming, design rules and guidelines that were applied by OAGi 94
when developing the XML Schema instantiation of OAGIS 9.0. Since OAGIS 9.0 employs 95
standards from other organizations this document defines how those standards are used 96
and incorporated in OAGIS. 97

1.1 Support for UN/CEFACT Standards 98

OAGi supports UN/CEFACT standards where they exist and apply to OAGi standards. In 99
terms of this document, the OAGIS NDR Standard the UN/CEFACT ATG2 Naming and 100
Design Rules (NDR) applies. 101

As such this document will make numerous references to the UN/CEFACT NDR 102
document. 103

1.2 Scope and Focus 104

This OAGIS NDR Standard can be employed wherever extensions to OAGIS 9.0 are to be 105
made. They may also be employed in the design of other XML schema for defining the 106
content of information exchange. 107

1.3 OAGi Approach 108

OAGi uses a unique approach to standards from most other organizations. OAGi works 109
with other standards organizations both horizontal and vertical in nature. In doing this OAGi 110
avoids the not-invented here syndrome that most organizations fall into. 111

Additionally OAGi focuses on being technology sensitive but not technology specific. This 112
means that OAGIS can be used equally well with either Service Oriented Architecture 113
(SOA) environment (ebXML or Web Services) or Message-Oriented-Middleware (MOM). 114

Having eleven years experience defining content to enable integrations in a SOA or SOA 115
like environment provides OAGi the experience and expertise simply not available in other 116
organization. Add to this eleven years worth of content that any other organization would 117
have to build. OAGi has the experience and content needed for integrating business 118
applications, today. 119

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

7

1.4 Terminology and Notation 120

The key words, “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 121
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this 122
document are to be interpreted as described in Internet Engineering Task Force (IETF) 123
Request For Comments (RFC) 2119.1 Where ever xsd: appears it is references to 124
constructs from W3C XML schema specification. Where ever ccts: appears it is references 125
to constructs from CCTS 126

The following are notations that are used throughout this document: 127

• Example – A representation of a definition or rule that are intended to be 128
informative. 129

• [Note] – Explanatory information that is intended to be informative. 130

• [UN/CEFACT R n] – Denotes the identification of a rule that comes from the 131
UN/CEFACT ATG2 NDR document that requires conformance. 132

• [OAGi R n] – Identifies a rule that is specified by this document that requires 133
conformance. 134

Where a UN/CEFACT rule exists a corresponding OAGi rule will be provided that 135
references the UN/CEFACT rule and indicates OAGi’s conformance. If OAGi 136
does not comply with the UN/CEFACT rule the alternative that OAGi uses will be 137
provided. 138

[Note] Rules are normative. In order to ensure continuity across versions of the 139
specification, rule numbers that are deleted will not be re-issued and any new 140
rules will be assigned the next higher number regardless of the location. 141

• When defining rules the following annotations are used: 142

o [] – Optional 143

o < > - Variable 144

o | - Choice 145

• Courier – All words in bolded courier font are values, objects or 146
keywords. 147

1 Key words for use in RFCs to Indicate Requirement Levels. Internet Engineering Task Force,
Request for Comments: 2119, March, 1997, http://www.ietf.org/rfc/rfc2119.txt

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

8

1.5 Related Documents 148

UN/CEFACT Core Components Technical Specification, Part 8 of the ebXML Framework 149
Version 2.01 150

UN/CEFACT XML Naming and Design Rules, Draft 1.12_14jul 15 July 2005 151

W3C XML Schema Part 1: Structures. W3C Recommendation, 2 May 2001 152

W3C XML Schema Part 2: Datatypes. W3C Recommendation, 2 May 2001 153

1.6 Guiding Principles 154

The guiding principles for this document extend the guiding principles defined in the 155
UN/CEFACT NDR Guiding Principles section 2 by adding the following as the basis for all 156
the design rules contained in this document. 157

• Conformance to the UN/CEFACT NDR document, where practically possible. 158

o Where it is not practically possible to conform to the UN/CEFACT NDR, 159
this document provides rules to define a more practical solution. 160

• Ensure the practical application of XML Schema in OAGIS such that it is 161
implementable today. 162

• Simplify the use of OAGIS by further defining the naming and design rules used. 163

1.7 Conformance 164

Applications will be considered to be in full conformance with this technical standard if they 165
comply with the content of the normative sections, rules and definitions. 166

[OAGi R 1] 167

[UN/CEFACT R 1] Applications will be considered to be in full conformance with this technical 168
specification if they comply with the content of sections, Rules and definitions. 2 169

OAGi adopts this rule with editorial changes only. 170

Applications will be considered to be in full conformance with this technical standard if they 171
comply with the content of Appendix, Naming and Design Rules List. 172

2.0 OAGIS XML CONSTRUCTS 173

2 UN/CEFACT XML Naming and Design Rules, Draft 1.2 8 September 2005

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

9

This section defines rules related to XML constructs that OAGIS uses. These rules include: 174

• Relationship to other standards 175

• Naming and Modeling Rules 176

• Reusability Scheme 177

• Modularity Model 178

• Namespace Scheme 179

• Versioning Scheme 180

2.1 Relationship to other standards 181

As indicated earlier OAGIS 9.0 includes references and makes use of other standards. 182
This is accomplished in such a way that these other standards provide OAGIS users the 183
greatest level of reuse of existing standards, while also minimizing the impact of these 184
standards on OAGIS itself. The following is a list of the standards included in OAGIS 9.0: 185

• W3C - URI/URL 186

• W3C - XML Schema 1.0 Part 1 187

• W3C - XSL Schema 1.0 Part 2 188

• W3C - XML Style Language 189

• W3C - XML Path Language (XPath) Version 1.0 190

• ISO - ISO11179-5 Specification and standardization of data elements -- Part 5: 191
Naming and identification principles for data elements 192

• ISO - ISO1500-5 Core Components Technical Specification – Also known as 193
UN/CEFACT Core Component Technical Specification - CCTS 194

• ISO - ISO4217 - Currency Codes 195

• ISO - ISO639 - Language Codes 196

• MIME Media Type Code 197

• UNECE Unit Code 198

• UN/CEFACT ATG2 Naming and Design Rules – NDR 199

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

10

• UN/CEFACT Harmonized Core Components – TBG17 200

• ISO - ISO20022 (UNIFI Financial Standard) – IST Harmonization 201

• Object Management Group (OMG) – Unified Modeling Language (UML) 202

2.1 .1 XML Core Technologies 203

OAGi has determined that the World Wide Web Consortium (W3C) XML schema definition 204
(XSD) language is the generally accepted schema language. Therefore, all OAGi content 205
specifications are expressed in XSD. All references to XML schema will be as XSD 206
Schema or OAGIS XSD Schema or OAGIS XML Schema. 207

[OAGi R 2] 208

[UN/CEFACT R 2] All UN/CEFACT XSD Schema design rules MUST be based on the W3C 209
XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part2: 210
DataTypes.2 211

OAGi adopts this rule with editorial changes only. 212

All OAGi XSD Schema or OAGIS Overlay Schema design rules MUST be based on the W3C 213
XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part2: 214
DataTypes. 215

The W3C is the recognized source for XML specifications. W3C specifications may hold 216
various states or status. Only W3C specifications with a status of recommended are 217
guaranteed by the W3C to be stable. 218

[OAGi R 3] 219

[UN/CEFACT R 3] All UN/CEFACT XSD Schema and UN/CEFACT conformant XML instance 220
documents MUST be based on the W3C suite of technical specifications holding 221
recommendation status. 222

OAGi adopts this rule with editorial changes only. 223

All OAGi XSD Schema and OAGIS Overlay Schema and corresponding conformant XML 224
instance documents MUST be based on the W3C suite of technical specifications holding 225
recommendation status. 226

In order to maintain a consistent form in all of the OAGIS XSD Schemas, each needs to 227
use a standard structure for all content. This standard structure is contained in Schema 228
File Structure appendix in this document. 229

[OAGi R 4] 230

[UN/CEFACT R 4] UN/CEFACT XSD Schema MUST follow the standard structure defined in 231
Appendix B. 232

OAGi further constrains this rule. 233

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

11

All OAGi XSD Schemas MUST follow the standard structure defined in the Schema File 234
Structure appendix in this document. OAGIS Overlay schemas used to extend OAGIS MUST 235
use this same structure. 236

2.1 .2 Core Component Technical Specifications 237
- CCTS 238

OAGi’s implementation of the Core Component Technical Specification (CCTS) conforms 239
with the approach described in UN/CEFACT NDR section 5.2 Relationship to the CCTS. 2 240

This means that the OAGIS 9.0 uses CCTS to represent the context neutral and context 241
specific building blocks. A context neutral core component is “a building block for the 242
creation of a semantically correct and meaningful information exchange package. It 243
contains only the information pieces necessary to describe a specific concept.” These 244
neutral core components are then instantiated as context specific components for message 245
assembly and model harmonization. These context specific components are defined as 246
Business Information Entities (BIEs). 247

From this the design rules are coupled with CCTS in that: 248

• The message assembly is represented as a xsd:complexType.definion and 249
element declaration in an XSD Schema. The element declaration is based on 250
xsd:complexType that represents the document level ABIE. A global element 251
appears in and is designated as the root element of a conformant XML instance. 252

• An ABIE is defined as a xsd:compleType. 253

• Depending upon the type of association an Association Business Information 254
Entiity (ASBIE) will be declared as either a global element, if the ASBIE represents 255
a composition, or as a local element when the ASBIE is not a composition, within 256
the xsd:complexType representing the ABIE. The ASBIE element itself is based 257
on the xsd:compleType of the associated ABIE. In this way the content model of 258
the associated ABIE is represented in the XSD Schema instantiation. 259

Note: 260

Per CCTS, an ABIE can contain other ABIEs in ever higher levels of aggregation. 261
When an ABIE contains another ABIE , this is accomplished by using an ASBIE. 262
Where the ASBIE is the linking mechanism that shows hierarchical relationships 263
between the ABIE constructs. When an ASBIE is used it referred to as the 264
associating ABIE and the ABIE that it represents as the associated ABIE. 265

• A Basic Business Information Entity (BBIE) is declared as a local element or a 266
local attribute within the xsd:complexType representing the parent ABIE. The BBIE 267
is based on a qualified or unqualified data type (DT). 268

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

12

• A data type (DT) is defined as either a xsd:complexType or xsd:simpleType. 269
DT’s are based on Core Component Type xsd:complexType from the CCT 270
schema module. These data types can be unqualified (no additional restrictions 271
above those imposed by the CCT type) or qualified (additional restrictions above 272
those imposed by the CCT type). XSD built-in data types will be used whenever 273
the facets of the built-in data type are equivalent to the CCT supplementary 274
components for that data type. 275

Note: 276

Data Types are not derived from the CCT complex types using 277
xsd:restriction. Whereas all CCTs are defined as complex types with 278
attributes representing their supplementary components, in several cases we 279
leverage built-in xsd:simpleType whose facets correspond to the 280
supplementary components. 281

2.1 .3 UN/CEFACT ATG2 Naming and Design 282
Rules – NDR 283

This document embraces and extends the UN/CEFACT Naming and Design Rules (NDR) 284
document by identifying the how OAGIS 9.0 uses the UN/CEFACT NDR and other 285
standards. This standard is provided for others to follow so as to consistently extend 286
OAGIS in their own Overlay extensions. As well as, enabling tools vendors to design and 287
code their applications to take advantage of OAGIS to share information in an open 288
manner. 289

2.1 .4 UN/CEFACT Harmonized Core 290
Components – TBG17 291

OAGi has committed to use the Harmonized Core Components as they are approved by 292
UN/CEFACT TBG 17. OAGIS 9.0 incorporates Core Components approved from TBG 17, 293
as well as those that are proposed. OAGi incorporates approved components into OAGIS 294
Components by making use of them directly as provided or by using them as a basis of an 295
extended OAGIS ABIE. OAGi also provides those that are considered by TBG 17 to be 296
unstable such that they maybe used by organizations looking to extend OAGIS 297
Components. 298

At the time of publication for OAGIS 9.0 the list of TBG 17 Core Components is below 299
along with an indication of the Core Components used by OAGIS 9.0. 300

Table 2-1 List of TBG 17 Core Components 301

TBG 17 Core Components Used in
OAGIS

AllowanceCharge X

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

13

Authorization X

PaymentAuthorization X
Calculation X
Communication X
Contact X
Dimension X
CurrencyExchange X
HazardousMaterial X
Location X
PaymentTerms X
Period X
Person X
Price X
TemperatureRange X
Status X
Tax X
Preference X

Temperature X
Project X
CountrySubDivision
Country
Range X
GeographicalCoordinate

Address

Account
BusinessProfile
Card
Charge
CompletedWork
Condition
Consignment
Construction
Contract
DangerousGoods
DeliveryTerms
Document
Event
ExaminationResult
GoodsDescription
GoodsItem
Guarantee
Instructions
Metrics
Organization
Party
PartyMeans
Payment

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

14

Penalty
Process
ProductItem
Qualification
Registration
Route
Service
Staff
TaxCategory
TechnicalCapability
TradeTerms
WorkCapability

2.1 .5 ISO20022 (UNIFI Financial Standard) – IST 302
Harmonization 303

ISO20022 – IST Harmonization is a joint initiative of OAGi, IFX, SWIFT and TWIST. The 304
initiatives purpose is to define a standard set of interactions between corporations and 305
banks and to capture these standards in a repository that can be found at 306
www.iso20022.org. At the time of publication for OAGIS 9.0, this repository consists of two 307
XML Schema standards: 308

• CoreCreditTransferInitiation ($pain.001.001.01.xsd) – corporate to bank payment 309
initiation message (credit transfer) 310

• PaymentInitiationStatus ($pain.002.001.01.xsd).- bank to corporate payment 311
initiation status message. 312

OAGi incorporates these IST standards into OAGIS 9.0 by providing Nouns and Business 313
Object Documents (BODs) that make use of these schema documents by directly 314
importing and using the component definitions of the IST group. OAGi codifies equivalent 315
BODs, Nouns, and Components in the OAGIS library providing a consistent approach to 316
reuse of these standards througout OAGIS 9.0. 317

2.1 .6 OMG UML 318

OAGi uses UML to model OAGIS content and business interactions. This is done in 319
accordance to the UN/CEFACT UMM. OAGi uses UML Class diagrams to model the 320
content. UML Sequence and Collaboration Diagrams are used to model the business 321
interactions in the OAGIS Scenarios. The Sequence and Collaboration Diagrams can 322
then be used as the basis for UML Activity Diagrams that fully capture the actual 323
implementation. 324

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

15

The Sequence and Collaboration diagrams are provided as part of the documentation for 325
OAGIS. It is the responsibility of the implementers to use these as the basis of the 326
Activity Diagram to capture the resulting integrated system. As the detail of each specific 327
integration is unique. 328

This documentation is added as of the OAGIS 9.0.1 release. 329

2.2 Naming and Modeling Rules 330

OAGIS XML Schema are derived from CCT, CCTS, and UMM process modeling and 331
data analysis. The OAGIS library contains conformant CCT and CCTS dictionary entry 332
names as well as truncated XML element names that are conformant with the naming 333
constraint rules that follow. The qualified XPath ties the information to its standardized 334
semantics as described by the underlying CCTS, while the XML element or attributes 335
names are a truncation that reflects the hierarchy inherent in the XML construct. This 336
implies that a part of the fully qualified XPath will represent the CCTS dictionary entry 337
name of the corresponding ABIE, BBIE, ASBIE or DT. 338

[OAGi R 5] 339

[UN/CEFACT R 5] Each element or attribute XML name MUST have one and only one fully 340
qualified XPath (FQXP). 341

OAGi adopts this rule without modification. 342

For example: Communication/Address/StreetName 343

The official language for OAGi is English. Therefore, all official XML constructs are 344
published by OAGi in English. XML development work may occur in other languages; 345
however submissions for inclusion in the OAGIS library must be in English. Other 346
language translations of OAGi publications are at the discretion of the users. 347

[OAGi R 6] 348

[UN/CEFACT R 6] Element, attribute and type names MUST be composed of words in the 349
English language, using the primary English spellings provided in the Oxford English 350
Dictionary. 351

OAGi adopts this rule without modification. 352

Lower Camel Case capitalizes the first character of each word except the first word and 353
compounds the name (i.e. removes all white space). Upper Camel Case capitalizes the 354
first character of each word and compounds the name. OAGi uses Lower Camel Case 355
(LCC) for naming attributes and Upper Camel Case (UCC) for naming elements and 356
types. 357

[OAGi R 7] 358

[UN/CEFACT R 7] Lower camel case (LCC) MUST be used for naming attributes. 359

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

16

OAGi adopts this rule without modification. 360

Example of an attribute: <xsd:attribute name=”unitCode” …> 361

[OAGi R 8] 362

 [UN/CEFACT R 8] Upper camel case (UCC) MUST be used for naming elements and types. 363

OAGi adopts this rule without modification. 364

Example of an element: <xsd:element name=”LanguageCode”> 365

Example of a type: <xsd:complexType name=”CodeType”> 366

[OAGi R 9] 367

[UN/CEFACT R 9] Element, attribute and type names MUST be in a singular form unless the 368
concept itself is plural. 369

OAGi adopts this rule without modification. 370

Example of Singular and Plural concept forms: 371

Singular – Allowed: <xsd:element name=”GoodsQuantity” …> 372

 Plural – Not Allowed: <xsd:element name=”ItemsQuantity” …> 373

[OAGi R 10] 374

[UN/CEFACT R 10] Element, attribute and type names MUST be drawn from the following 375
set: a – z and A – Z. 376

OAGi adopts this rule without modification. 377

Example of Non-Letter Characters – Not Allowed 378

 <xsd:element name=”LanguageCode8” …> 379

XML 1.0 specifically prohibits the use of certain reserved characters in XML tag names. 380
These include periods, spaces, and other separators. 381

[OAGi R 11] 382

[UN/CEFACT R 11] XML element, attribute and type names constructed from dictionary 383
entry names MUST NOT include periods, spaces, or other separators; or characters not 384
allowed by W3C XML 1.0 for XML names. 385

OAGi adopts this rule without modification. 386

Example of Spaces in Name – Not Allowed 387

 <xsd:element name=”Customized_ Language. Code:8” …> 388

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

17

[OAGi R 12] 389

[UN/CEFACT R 12] XML element, attribute and type names MUST NOT use acronyms, 390
abbreviations, or other word truncations except those included in the UN/CEFACT controlled 391
vocabulary or listed in Appendix C. 392

OAGi relaxes this rule. 393

XML element, attribute and type names MUST NOT use acronyms, abbreviations, or other 394
word truncations except those included in the UN/CEFACT controlled vocabulary, listed in 395
Appendix C of the UN/CEFACT NDR document or in the Appendix E - OAGi Accepted 396
Acronyms and Abbreviations in this document. 397

 398

[OAGi R 13] 399

[UN/CEFACT R 13] The acronyms and abbreviations listed in Appendix C MUST always be 400
used. 401

OAGi adopts this rule with editorial changes only.. 402

The acronyms and abbreviations listed in Appendix OAGi Acronyms and Abbreviations 403
MUST always be used. 404

 405

[OAGi R 14] 406

[UN/CEFACT R 14] Acronyms and abbreviations at the beginning of an attribute declaration 407
MUST appear in all lower case. All other acronyms and abbreviation usage in an attribute 408
declaration must appear in upper case. 409

OAGi adopts this rule without modification. 410

 411

[UN/CEFACT R 15] Acronyms MUST appear in all upper case for all element declarations 412
and type definitions. 413

OAGi adopts this rule without modification. 414

Example Acronyms and Abbreviations 415

ID is an allowed abbreviation: <xsd:element name=”ID”> 416

Cd is not an approved abbreviation : <xsd:element name=”ReasonCd”> 417

2.2 .1 Module Naming 418

In order to ease implementation it is critical that the name of the schema modules be 419
consistent across platforms. For this reason OAGi uses the same Upper Camel Case 420
naming convention described above for the name of schema modules. For example a 421

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

18

Purchase Order schema is name PurchaseOrder. This avoids using white space that 422
may be represented differently on different systems. 423

[OAGi R 15] Upper camel case (UCC) MUST be used to name schema modules. 424

2.3 Reusability Scheme 425

OAGi like UN/CEFACT is committed to an object based approach for its process models 426
and core component implementation as supported by both UMM and CCTS. A type based 427
approach for XML management provides the closest alignment with the process modeling 428
methodology in UMM. Type information is now accessible when processing XML instance 429
documents. Post schema validation infoset (PSVI) capabilities are emerging that support 430
this approach. For example “data-binding” software that compiles schema into ready-to-431
use object classes that are capable of manipulating XML data based on their types and 432
structure. 433

The most significant issue to a type based approach is the risk of developing an 434
inconsistent element vocabulary where elements are declared locally and allowed to be 435
reused without regard to semantic clarity and consistency across types. 436

In order to avoid this OAGi and UN/CEFACT recommend creating a consistent element 437
vocabulary such that when an element is bound to a type that binding persists across the 438
namespace in which the binding is defined. The result of this is that every element is 439
uniquely named. As a result of this requirement OAGIS 9.0 uses a primarily all global 440
element i.e. Garden of Eden XML Schema Design Pattern. 441

While it is possible to accomplish this using the Garden of Eden XML Schema Design 442
Pattern, which indicates that all elements are defined globally with globally defined types. 443
Or by using the Ventian Blind XML Schema Design Pattern, which indicates all elements 444
other than the root element is defined locally using globally defined types. Neither of these 445
design patterns communicates the information captured in the Model that the schemas are 446
based upon. 447

To address these requirements OAGi and the UN/CEFACT recommend using the Hybrid 448
XML Schema Design Pattern but do not make it a requirement. While enforcing the 449
requirement that the element names be unique within the given namespace whether they 450
are declared locally or globally. 451

The Hybrid XML Schema Design provides benefits over a pure type based approach. Most 452
significantly it increases reusability of a library of content both at a modeling and XML 453
Schema level. For more information about the Hybrid XML Schema Design Pattern please 454
see the Hybrid XML Schema Desigin Pattern – Position Paper from the Open Applications 455
Group. 456

The key principles of the “hybrid approach” are: 457

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

19

1. Global types and elements are used to represent reusable constructs that have 458
sufficient semantics independent of the context in which they are used. 459

2. Local types and elements are used to represent constructs that are only meaningful 460
within a specific context. 461

3. All classes are expressed as complexTypes in the XML Schema. 462

4. All attributes of a class are declared as local xsd:element within the corresponding 463
xsd:complexType. 464

5. Classes associated through aggregation (e.g. Party, BuyerParty in figure 1 below) 465
are globally declared as an xsd:element and referenced in the aggregating element. 466

6. Classes associated through composition (e.g. PurchaseOrderHeader and 467
PurchaseOrderLine in figure 1) are locally declared as xsd:element elements within 468
the xsd:complexType of the PurchaseOrder. A Composition ASBIE is defined as a 469
specialized type of ASBIE that represents a composition relationship between the 470
associating ABIE and the associated ABIE. 471

7. Generalization associations indicate classes that inherit the source class. This is 472
represented in XML Schema using complexType derivation by extension. 473

Due to the advantages of the Hybrid XML Schema Design Pattern OAGIS will implement 474
this design pattern in a future release of OAGIS. OAGIS is able to transition to the Hybrid 475
XML Schema Design Pattern without affecting compatibility as descrbied in the Versioning 476
section of this document. 477

[OAGi R 16] 478

For each ABIE, a named xsd:element MUST be globaly declared. 479

 480

[OAGi R 17] 481

For each ABIE, a named xsd:complexType MUST be globaly declared. 482

 483

[OAGi R 18] 484

For each attribute of an object class (BBIE) identified in an ABIE, a named xsd:element 485
MUST be locally declared within the xsd:complexType representing that ABIE. 486

 487

[OAGi R 19] 488

For each ASBIE whose ccts:AssociationType is Composition, a named xsd:element 489
MUST be locally declared within the xsd:complexType representing the associating ABIE. 490

 491

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

20

[OAGi R 20] 492

For each ASBIE whose ccts:AssociationType is not Composition, a xsd:element 493
MUST be globally declared. 494

IdentifierType

PurchaseOrder

BuyerParty
SupplierParty

DocumentID
ID : IdentifierType
RevisionID : IdentifierType

PurchaseOrder
Header

PurchaseOrderLine
LineNumer : IdentifierType

Address

Party
ID : IdentifierType

 495

Figure 1 – UML Model of a PurchaseOrder 496

Figure 1 shows a UML representation of a very simple model of a PurchaseOrder. In this 497
example the PurchaseOrder contains two composite ABIEs the PurchaseOrderHeader and 498
the PurchaseOrderLine. 499

The PurchaseOrderHeader has an additional composite association DocumentID and 500
aggregations to the Party objects BuyerParty, SellerParty, and Party. 501

The DocumentIDType is further defined by the ID, RevisionID, and VariationID each of 502
which are defined by the CCTS DataType IdentifierType. 503

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

21

The PurchaseOrderLine is defined by a LineNumber that is defined by the CCTS DataType 504
IdentifierType and aggregations to the Party objects BuyerParty, SellerParty. 505

By applying the rules for the Hybrid XML Schema Design Pattern to the UML Model in 506
Figure 1 results in the sample XML schema code provided in Figure 2. In this schema code 507
sample it is possible to identify the Objects ABIEs and the Composite ABIEs from the 508
sematic context of the Purchase Order. 509

Composite associations are realized by using XML Schema local elements. The 510
associations to other objects are realized by referencing the global elements for the given 511
object. Further more the classes are realized by using XML Schema xsd:complexType 512
and/or xsd:simpleType. 513

 514
<?xml version="1.0" encoding="UTF-8"?> 515
<xsd:schema xmlns="http://www.openapplications.org" 516
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 517
targetNamespace="http://www.openapplications.org" 518
elementFormDefault="qualified" attributeFormDefault="unqualified"> 519
 <xsd:element name="PurchaseOrder" type="PurchaseOrderType"/> 520
 <xsd:complexType name="PurchaseOrderType"> 521
 <xsd:sequence> 522
 <xsd:element name="PurchaseOrderHeader" 523
type="PuchaseOrderHeaderType"/> 524
 <xsd:element name="PurchaseOrderLine" 525
type="PurchaseOrderLineType"/> 526
 </xsd:sequence> 527
 </xsd:complexType> 528
 <xsd:complexType name="PuchaseOrderHeaderType"> 529
 <xsd:sequence> 530
 <xsd:element name="DocumentID" type="DocumentIDType"/> 531
 <xsd:element ref="BuyerParty"/> 532
 <xsd:element ref="SupplierParty"/> 533
 <xsd:element ref="Party"/> 534
 </xsd:sequence> 535
 </xsd:complexType> 536
 <xsd:complexType name="PurchaseOrderLineType"> 537
 <xsd:sequence> 538
 <xsd:element name="LineNumber" type="IdentifierType"/> 539
 <xsd:element ref="BuyerParty"/> 540
 <xsd:element ref="SupplierParty"/> 541
 <xsd:element ref="Party"/> 542
 </xsd:sequence> 543
 </xsd:complexType> 544
 <xsd:element name="SupplierParty" type="SupplierPartyType"/> 545
 <xsd:complexType name="SupplierPartyType"> 546
 <xsd:complexContent> 547
 <xsd:extension base="PartyType"/> 548
 </xsd:complexContent> 549
 </xsd:complexType> 550
 <xsd:element name="BuyerParty" type="BuyerPartyType"/> 551
 <xsd:complexType name="BuyerPartyType"> 552
 <xsd:complexContent> 553

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

22

 <xsd:extension base="PartyType"/> 554
 </xsd:complexContent> 555
 </xsd:complexType> 556
 <xsd:element name="Party" type="PartyType"/> 557
 <xsd:complexType name="PartyType"> 558
 <xsd:sequence> 559
 <xsd:element name="ID" type="IdentifierType"/> 560
 <xsd:element ref="Address"/> 561
 </xsd:sequence> 562
 </xsd:complexType> 563
 <xsd:element name="Address" type="AddressType"/> 564
 <xsd:complexType name="AddressType"> 565
 <xsd:sequence/> 566
 </xsd:complexType> 567
 <xsd:complexType name="DocumentIDType"> 568
 <xsd:sequence> 569
 <xsd:element name="ID" type="IdentifierType"/> 570
 <xsd:element name="RevisionID" type="IdentifierType" 571
minOccurs="0"/> 572
 </xsd:sequence> 573
 </xsd:complexType> 574
 <xsd:complexType name="IdentifierType"> 575
 <xsd:simpleContent> 576
 <xsd:extension base="xsd:normalizedString"/> 577
 </xsd:simpleContent> 578
 </xsd:complexType> 579
</xsd:schema> 580

Figure 2 – XSD Schema Definition of a Purchase Order. 581

2.4 Modularity Model 582

Modules can be defined unique in their functionality, or represent splitting of larger schema 583
files for performance of manageability. A modularity model provides an efficient and 584
effective mechanism for importing components as needed rather than dealing with 585
complex, multi-focused schema. 586

2.4 .1 UN/CEFACT Modular ity Model 587

UN/CEFACT has defined several types of schema modules that support this approach. 588
Figure 2-1 shows the CEFACT modularity model. The schema modules are categorized 589
into message assembly and external schema. The message assembly modules include a 590
root schema and internal schema modules that reside in the same namespace as the root 591
schema. The external schema modules consist of a set of reusable schema for ABIEs, 592
unqualified data types, qualified data types, and code lists. Each of these schema modules 593
reside in their own namespace. Dependencies exist as shown in the figure between the 594
various modules. It is important to note that the modularity model has been designed such 595
that there are no circular includes or imports. 596

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

23

 597
Figure 3 - UN/CEFACT XSD Schema Modularity Scheme 598

Note: Figure 3 is an OAGi depiction of the UN/CEFACT NDR Schema Modularity Scheme 599
figure 5-5. 600

2.4 .2 OAGIS Schema Modular ity 601

In OAGIS 9.0, OAGi introduces the concept of Developer BODs and Standalone BODs. 602
Each serves a different purpose. The Developer BODs are intended to maintain the 603
schema modularity and the ability to reuse existing components as need without redefining 604
them. This is the same principle expressed in both OAGIS 8.0 and in the UN/CEFACT 605
NDR Schema Modularity. The Standalone BODs are intended to enable implementations. 606
Many tools available today have difficulty working with schemas that modularize the 607
content into different schema files. For these reasons OAGi provides both the Developer 608
and Standalone BODs that have the same content. The Standalone BODs contain 609
everything that a given BOD uses from the OAGIS 9.0 namespace that it uses. The 610
Developer BODs include the other schemas to obtain the common components that are 611
needed. 612

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

24

 613
Figure 4 - OAGIS Developer XSD Schema Modularity Scheme 614

The Developer BODs are what OAGi uses to develop the BODs and should be used by 615
those interested in extending OAGIS using an Overlay. The Developer BODs should also 616
be used for those that have tools that are XML Schema compliant enough to utilize the 617
modular nature of XML Schema that is necessary to achieve the modularity scheme 618
recommended by UN/CEFACT and a model driven approach to XML Schema. 619

The Standalone BODs are used only in deploying an implementation. Only if the tools and 620
applications in the implementation are not XML Schema compliant enough to utilize the 621
modular nature of XML Schema. 622

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

25

 623
Figure 5 – OAGIS Standalone XSD Schema Modularity Scheme 624

In both the Developer or the Standalone BODs the relationship to the schema modules 625
identified by UN/CEFACT are the same. 626

• The BOD schema module plays the role of the UN/CEFACT root schema module. 627
It always includes any internal schemas residing in its namespace. It may import 628
root schemas from other namespaces as well as reusable schemas from other 629
standards bodies. 630

• The OAGIS Noun, Components, Fields and Meta schema modules play the role of 631
the UN/CEFACT internal schema modules. The Fields schema module imports the 632
unqualified data type, and qualified data type. The Components schema module 633
imports the reusable ABIE schema modules. 634

• The core component type schema modules are provided as references to the 635
different external schema modules. Each in their own namespaces 636

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

26

The difference in the Developer and the Standalone BODs comes down to the presence of 637
the OAGIS Noun, Components, Fields, and Meta files or the Internal Schema modules. 638
This difference is depicted graphically in Figures 4 and 5. 639

Each of which is compliant with the UN/CEFACT NDR since the Internal Schema Modules 640
may have zero to unbounded includes. 641

 642

Note: OAGIS uses the names of the schema module using upper camel case as the 643
names of the XML Schema files. All of OAGIS is defined in a single OAGIS namespace 644
other than the OAGIS Code List assembly, which is defined in a second namespace. 645

2.4 .3 BOD – Root Schema 646

OAGi incorporates the modularity model as described above. There are over four hundred 647
OAGIS BOD root schema in OAGIS 9.0, each of which express a separate business 648

Note:

In order to be consistently understood, the remainder of this document will use the
following schema module names and tokens.

Table 1 Schema Module and Token

Schema Module Name Token
RootSchema rsm

CCTS/CCT cct

UN/CEFACT Reusable Aggregate Business Information Entity ram

UN/CEFACT Unqualified Data Type udt

UN/CEFACT Qualified Data Type qdt

CodeList clm

Identifier List ids

Open Applications Group Integration Standard oa

OAGIS BODs bod

OAGIS Components oac

OAGIS Fields oaf

OAGIS Nouns oan

OAGIS Code Lists oacl

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

27

function. Add to this the vertical extension of OAGIS that exist by the different vertical 649
industry groups and there are many more BODs defined than just those defined by OAGIS 650
itself. 651

[OAGi R 21] 652

[UN/CEFACT R 16] A root schema MUST be created for each unique business information 653
exchange. 654

OAGi adopts this rule with editorial changes only. 655

A BOD, root schema, MUST be created for each unique business information exchange. 656

The modularity approach enables the reuse of an individual BOD with out having to import 657
the entire OAGIS BOD library. Additionally, a BOD schema can include individual modules 658
without having to include the entire OAGIS library. This is applies both within the OAGIS 659
and for Overlays of OAGIS. Each BOD defines its own dependencies. A BOD root schema 660
should not duplicate reusable XML constructs contained in other schema; instead it should 661
reuse existing constructs where they exist. Specifically, BOD root schema will import or 662
include other schema modules to maximize reuse through xsd:include or xsd:import 663
as appropriate. 664

[OAGi R 22] 665

[UN/CEFACT R 17] A root schema MUST NOT replicate reusable constructs available in 666
schema modules capable of being referenced through xsd:include or xsd:import. 667

OAGi adopts this rule with editorial changes only. 668

A Developer BOD, root schema, MUST NOT replicate reusable constructs available in 669
schema modules capable of being referenced through xsd:include or xsd:import. A 670
Standalone BOD must reference reusable constructs only through xsd:import. 671

Schema modules used by the BOD schema are treated as either internal or external 672
schema modules so that correct namespace decisions are made. 673

[OAGi R 23] 674

[UN/CEFACT R 18] UN/CEFACT XSD schema modules MUST either be treated as external 675
schema modules or as internal schema modules of the root schema. 676

OAGi adopts this rule with editorial changes only. 677

The schema modules MUST be treated as external schema modules or as internal schema 678
modules of any OAGi or OAGi Overlay BOD schema module. 679

OAGIS BOD modules include the corresponding Noun schema module which defines the 680
reusable constructs needed. This is done as indicated above through either the use of an 681
xsd:include or xsd:import. 682

[OAGi R 24] 683

OAGi BOD root schema modules MUST be named <VerbName><NounName>. 684

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

28

Where: 685

<VerbName> is the name of the Verb used by the BOD. 686

<NounName> is the name of the Noun used by the BOD. 687

 688

[OAGi R 25] OAGi BOD root schema modules MUST include the Noun schema module that 689
is indicated in the BOD Name. This is done by use of use of an xsd:include or 690
xsd:import. 691

 692

[OAGi R 26] The BOD module also defines the BOD root element that is the same as the 693
name of the BOD. For example ProcessPurchaseOrder identifies the Verb Process 694
and the Noun PurchaseOrder are used in this BOD. 695

The BOD root element makes use of a type that is named the same as the BOD with a 696
postfix of Type. This BODNameType is a xsd:complexType and is based on the 697
oa:BusinessObjectDocumentType, which it extends by adding a DataArea element. 698

The DataArea element uses a xsd:complexType named BODNameDataAreaType. The 699
DataAreaType binds the Verb and the Noun. 700

The Verb identifies the intended processing that is to occur as a result of the BOD. The 701
Noun identifies the object plus object attribute, action plus object or qualifier(s) plus object 702
data that the process is to use. The object may also be considered a document as is the 703
case in a PurchaseOrder. 704

[OAGi R 27] 705

OAGi BOD root schema module MUST define a root element that is named 706
<VerbName><NounName>, this is also known as the <BODName>. 707

 708

[OAGi R 28] 709

OAGi BOD root element MUST be define by a type that is named the same as the BOD root 710
element name post fixed with the word “Type” of the form <BODName>Type. 711

Where: 712

<BODType> = <VerbName><NounName>Type 713

 714

[OAGi R 29] 715

Each OAGi <BODType> MUST be based on the oa:BusinessObjectDocumentType defined 716
by OAGi. 717

 718

[OAGi R 30] 719

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

29

The <BODType> MUST extend the oa:BusinessObjectDocumentType by adding a local 720
DataArea element. 721

 722

[OAGi R 31] 723

OAGI BOD DataArea element must be defined by a type named <BODName>DataAreaType. 724
This type must bind the Verb and Noun indicated in the <BODName>, by referencing them in 725
an xsd:sequence. 726

2.4 .4 Noun, Components, Fields, Meta - Internal 727
Schema 728

Not all ABIEs will be applicable at a world-wide level. Some may be limited to a specific 729
business function, vertical industry need, or to certain information exchange. Nor have all 730
ABIE’s needed been addressed by TBG17 at this time. Even after TBG17 is complete 731
there are always new requirements for business that will require ABIEs that are not in the 732
UN/CEFACT Core Components. 733

These ABIEs that are not part of the TBG17 Core Components are to be implemented in 734
an internal schema module rather than in the reusable ABIE module. The UN/FACT NDR 735
indicates that a schema may have zero or more internal modules. These internal schema 736
modules will reside in the same namespace as their parent root schema. Being in the 737
same namespace as the root schema they use an xsd:include to incorporate these internal 738
schema modules. The modularity approach ensures that logical associations exist between 739
root and internal schema modules and that individual modules can be reused to maximum 740
extent possible. 741

The OAGIS Component library has always been designed with this in mind. The OAGIS 742
Nouns, Components, Fields, Meta and CodeList schema modules play the role of the 743
internal schema modules. These modules exist within the same namespace as the root 744
schema modules the BOD schema module. In the case of an Overlay the schema may 745
point to the corresponding OAGIS schema module in order to reuse existing constructs. 746

[OAGi R 32] 747

[UN/CEFACT R 19] All UN/CEFACT internal schema modules MUST be in the same 748
namespace as their corresponding rsm:RootSchema. 749

OAGi adopts this rule with editorial changes only. 750

All internal schema modules (Nouns, Components, Fields, Meta modules) MUST be 751
in the same namespace as their corresponding BOD root schema module. 752

OAGIS internal schema modules will identify the type of content in which they contain. For 753
example Components module contains Components or ABIEs that maybe used across 754

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

30

many different BODs. Further more the location of these internal schema modules within 755
the OAGIS repository further identify the scope in which they are used. For example: 756

The common Component schema module are located in: 757
Resources/Components/Common/ along with the other common schema modules Meta, 758
Fields and CodeLists. 759

• The financial Components schema module are located in: 760
Resources/Components/Financial/. 761

• The operational Components schema module are located in: 762
Resources/Components/Operational/. 763

• Similarly, all of the Nouns can be found in Resources/Nouns/. 764

[OAGi R 33] 765

[UN/CEFACT R 20] Each UN/CEFACT internal schema module MUST be named 766
<ParentRootSchemaModuleName><InternalSchemaModuleFunction> Schema Module. 767

OAGi adopts the intent of this rule but modifies the actual implementation. 768

Each internal schema module MUST be named one of the following depending upon the 769
modules function. 770

• The module containing the Noun MUST be named the same as the global element 771
representing the Noun. Where the Noun identifies the object plus object attribute, action 772
plus object or qualifier(s) plus object data that the process is to use. The object may also 773
be considered a document. 774

• The module containing reusable Components MUST be named Components and 775
depending upon the scope in which the components are applicable may be placed in an 776
appropriate location. 777

• The module containing reusable Fields MUST be named Fields. 778

• The module containing constructs that are used for the design of the BOD Architecture 779
MUST be named Meta. 780

• The module containing references to existing CodeLists that are external schema 781
modules or define new CodeLists or extensions to existing CodeLists are to be named 782
CodeLists. 783

2.4 .5 External Schema 784

These schemas are identified as external because they reside in a different namespace 785
from the BOD root schema. The BOD or internal schemas may import one or more of 786
these external schema modules. The UN/CEFACT NDR has identified the need for the 787
following external schema modules: 788

• Core Component Type 789

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

31

• Unqualified Data Type 790

• Qualified Data Type 791

• Reusable ABIE 792

• Code List 793

• Identifier List 794

• Other Standards Body ABIE module 795

2.4.5.1 Core Component Type Schema Module 796

The UN/CEFACT NDR requires that a schema module exists to represents the 797
normative form of the CCTs from CCTS. This schema in turn is the basis of the UDT 798
schema module. However, it is never to be imported directly into any schema module. 799

[OAGi R 34] 800

[UN/CEFACT R 21] A Core Component Type schema module MUST be created. 801

OAGi adopts this rule without modification. 802

The Core Component Type schema module will have a standard name that uniquely 803
differentiates it from other schema modules. 804

OAGi implements this name different from the UN/CEFACT NDR because of the issue 805
of consistently referencing files names with white spaces. Please see section 2.2.1 806
Module Naming. 807

[OAGi R 35] 808

[UN/CEFACT R 22] The cct:CoreComponentType schema module MUST be named 809
“UN/CEFACT Core Component Type Schema Module”. 810

OAGi adopts the intent of this rule but modifies the actual implementation. 811

The cct:CoreComponentType schema module MUST be named Core Component Type 812
Schema Module and be contained in the CoreComponentTypes.xsd file. 813

2.4.5.2 Unqualified Data Type Schema Module 814

A schema module is required to represent the normative form of the data types for 815
each CCT as expressed in the CCTS meta model. These data types are based on the 816
XSD constructs from the CCT schema module but where possible represent the builtin 817
xsd:simpleType instead of their parent CCT xsd:complexType. Because of this the 818

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

32

unqualified data type schema module does not import the CCT schema module. The 819
unqualified data types are so named because they contain no additional restriction on 820
their source CCTs other than those define in CCTS and the agreed upon best 821
practices. An unqualified data type is defined for all approved CCTS primary and 822
secondary representation terms. 823

[OAGi R 36] 824

[UN/CEFACT R 23] An Unqualified Data Type schema module MUST be created. 825

OAGi adopts this rule without modification. 826

The unqualified data type schema module must have a standard name that uniquely 827
differentiates it from other schema modules. 828

OAGi implements this name different from the UN/CEFACT NDR because of the issue 829
of consistently referencing files names with white spaces. Please see section 2.2.1 830
Module Naming. 831

[OAGi R 37] 832

 [UN/CEFACT R 24] The udt:UnqualifiedDataType schema module MUST be named 833
“UN/CEFACT Unqualified Data Type Schema Module”. 834

OAGi adopts the intent of this rule but modifies the actual implementation. 835

The udt:UnqualifiedDataType schema module MUST be named “Unqualified Data 836
Type Schema Module” and be contained in the UnqualifiedDataTypes.xsd file. 837

2.4.5.3 Qualified Data Type Schema Module 838

As data types are reused for different BIEs, restrictions on the data type may be 839
applied. These restricted data types are referred to as qualified data types. These 840
qualified data types will be defined in a separate qualified data type schema module. 841
This qualified data type module will import the Unqualified Data Type Schema Module. 842

[OAGi R 38] 843

[UN/CEFACT R 25] A Qualified Data Type schema module MUST be created. 844

OAGi adopts this rule without modification. 845

The qualified data type schema module will have a standard name that uniquely 846
differentiates it from other schema modules. 847

OAGi implements this name different from the UN/CEFACT NDR because of the issue 848
of consistently referencing files names with white spaces. Please see section 2.2.1 849
Module Naming. 850

[OAGi R 39] 851

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

33

[UN/CEFACT R 26] The qdt:QualifiedDataType schema module MUST be named 852
“UN/CEFACT Qualified Data Type Schema Module”. 853

OAGi adopts the intent of this rule but modifies the actual implementation. 854

The qdt:QualifiedDataType schema module MUST be named “Qualified Data Type 855
Schema Module” and be contained in the QualifiedDataTypes.xsd file. 856

2.4.5.4 Reusable Aggregate Business Information Entity 857
Schema Module 858

A single reusable aggregate business information entity schema module is required. 859
This schema module contains a type definition for every reusable ABIE in the 860
UN/CEFACT Core Component Library. This module may be segmented into additional 861
modules in the future, if deemed necessary. This single reusable schema module may 862
be compresses for runtime performance considerations if necessary. In this case 863
compression means that a run time of the schema module would be created that 864
contains a subset of the ABIEs. This subset would consist only of the ABIEs necessary 865
to support the specific root schema being validated. 866

[OAGi R 40] 867

 [UN/CEFACT R 27] A Reusable Aggregate Business Information Entity schema module 868
MUST be created. 869

OAGi adopts this rule without modification. 870

The reusable aggregate business information entity schema module will have a 871
standard name that uniquely differentiates it from other schema modules. 872

OAGi implements this name different from the UN/CEFACT NDR because of the issue 873
of consistently referencing files names with white spaces. Please see section 2.2.1 874
Module Naming. 875

[OAGi R 41] 876

 [UN/CEFACT R 28] The ram:ReusableAggregateBusinessInformationEntity 877
schema module MUST be named “UN/CEFACT Reusable Aggregate Business Information 878
Entity Schema Module”. 879

OAGi adopts the intent of this rule but modifies the actual implementation. 880

The ram:ReusableAggregateBusinessInformationEntity schema module MUST 881
be named Reusable Aggregate Business Information Entity Schema Module” and contained 882
in a ReusableAggregateBusinessInformationEntity.xsd file. 883

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

34

2.4.5.5 Code List Schema Modules 884

When a code list is required or used, reusable code list schema modules will be 885
created to minimize the impact of code list changes on BOD and other reusable 886
schema modules. Each reusable code list schema module will contain enumerated 887
values for the codes and code values. 888

[OAGi R 42] 889

[UN/CEFACT R 29] Reusable Code List schema modules MUST be created to convey code 890
list enumerations. 891

OAGi adopts this rule without modification. 892

Code list schema modules must have a standard name that uniquely differentiates it 893
from other schema modules. 894

[OAGi R 43] 895

[UN/CEFACT R 30] The name of each clm:CodeList schema module MUST be of the form: 896
<Code List Agency Identifier | Code List Agency Name><Code List 897
Identification Identifier | Code List Name> - Code List Schema 898
Module 899

Where: 900

• Code List Agency Identifier = Identifies the agency that maintains the code list 901

• Code List Agency Name = Agency that maintains the code list 902

• Code List Identification Identifier = Identifies a list of the respective corresponding codes 903

• Code List Name = The name of the code list as assigned by the agency that maintains 904
the code list 905

OAGi adopts this rule without modification. 906

2.4.5.6 Identifier List Schema Module 907

The UN/CEFACT NDR indicates where run time validation is required for an identifier 908
scheme. A separate identifier list schema module will be created to minimize the impact 909
of identifier list changes on root and other schemas. 910

Since this is an implementation specific choice OAGi does not include an identifier list 911
schema module. 912

Identifiers by their nature are considered an infinite list of values, where a given value 913
identifies a corresponding object. In many implementations each party involved has 914
their own identifier for an object. Cross-referencing identifiers can be implemented 915

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

35

using an Identifier List schema module, but since this is a run time activity an XML 916
instance or data base look up table may be a better fit. 917

[OAGi R 44] 918

[UN/CEFACT R 31] An Identifier List schema module MUST be created to convey 919
enumeration values for each identifier list that requires run time validation. 920

OAGi relaxes this rule. 921

For those run time environments that require identifier cross reference validation one of the 922
following SHOULD BE used to convey the enumerated values for each identifier list: 923

• An Identifier List schema module MAY BE used or 924

• A XML Instance identifier cross reference MAY BE used or 925

• A cross reference database MAY BE used. 926

If the identifier list schema modules are used, it must have a standard name that 927
uniquely differentiates it from other schema modules. 928

[OAGi R 45] 929

[UN/CEFACT R 32] The name of each ids:IdentifierList schema module MUST be 930
of the form: <Identifier Schema Agency Identifier | Identifier Schema Agency 931
Name><Identifier Schema Identifier | Identifier Schema Name> - Identifier List Schema 932
Module 933

Where: 934

• Identifier Scheme Agency Identifier = The identification of the agency that maintains the 935
identification scheme 936

• Identifier Scheme Agency Name = Agency that maintains the identifier list 937

• Identifier Scheme Identifier = The identification of the identification scheme 938

• Identification Scheme Name = Name as assigned by the agency that maintains the 939
identifier list 940

OAGi adopts this rule without modification. 941

2.4.5.7 Other Standards Body Aggregate Business 942
Information Entity Schema Modules 943

The UN/CEFACT NDR indicates that other standards bodies ABIE modules contain 944
reusable constructs created by standards bodies other than UN/CEFACT and made 945
publicly available. UN/CEFACT will only import other Standards Body ABIE modules 946
that are in strict conformance to the requirements of the CCTS and the UN/CEFACT 947
NDR. 948

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

36

OAGIS is intended to be fully conformant to the UN/CEFACT NDR. The differences 949
described in this document facilitate integration by others.. 950

[OAGi R 46] 951

[UN/CEFACT R 33] Imported schema modules MUST be fully conformant with the 952
UN/CEFACT XML Naming and Design Technical Specification and the Core Components 953
Technical Specification. 954

OAGi relaxes this rule. 955

Imported schema modules to OAGIS SHOULD be fully conformant with the OAGi OAGIS 956
Naming and Design Rules Technical Standard, the UN/CEFACT XML Naming and Design 957
Technical Specification and the Core Components Technical Specification. 958

An example of a standard that OAGIS imports that does not follow the standards 959
indicated is the ISO 20022 –Financial Payment Harmonization. This standard defines 960
payment transactions between corporations and banks. By relaxing this rule OAGIS 961
can be used in the banking industry. 962

2.5 Namespace Scheme 963

As defined by the W3C, XML namespaces provide a means of qualifying element and 964
attribute names used in XML documents by associating them with namespaces identified 965
by URI references. This enables interoperability and consistency in the XML artifacts for an 966
extensive library of reusable types and schema modules. The reusability methodology 967
used by OAGi maximizes the reuse of defined named types, globally declared elements 968
and locally defined attributes within the types. In addition, the modularity approach of 969
multiple reusable schema modules further enables the maximum amount of reuse 970
possible. These are expressed in the relationships between the various BOD, internal and 971
external schema modules identified earlier in this document. 972

2.5 .1 OAGIS Namespace Scheme 973

The namespace scheme used by OAGIS must allow for the relationships necessary to 974
support the OAGi Modularity Scheme and for the incorporation of other standards 975
namespaces such as the namespace scheme from UN/CEFACT. 976

The namespace scheme must also support being extended by the adoption of vertical 977
industry groups like the Automotive Industry Action Group (AIAG) to incorporate their 978
schema modules. 979

In addition to vertical standards organizations the namespace scheme must support a 980
hierarchy of namespaces within a larger vertical area. For example in automotive there are 981
several vertical groups that focus on certain aspects or geographic regions of automotive. 982

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

37

Figure 7 shows the approach used the OAGIS namespace structure. 983

984
Figure 7 OAGi Namespace Scheme 985

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

38

2.5 .2 Declar ing Namespace 986

Best practice indicates that every schema module should be declared in a namespace. 987
Further more the UN/CEFACT NDR declares that internal schemas must be declared in 988
the same namespace as the root schemas or BOD schemas. 989

[OAGi R 47] 990

 [UN/CEFACT R 34] Every UN/CEFACT defined or imported schema module MUST have a 991
namespace declared, using the xsd:targetNamespace attribute. 992

OAGi adopts this rule with editorial changes only. 993

Every defined or imported schema module MUST have a namespace declared, using the 994
xsd:targetNamespace attribute. 995

2.5 .3 Namespace Persistence 996

Namespaces are used to further qualify elements, attributes and types so that they maybe 997
uniquely identified. The name of an element, attribute and type are further defined by the 998
namespace in which it belongs. An element named X is different from an element named X 999
in a second namespace. Furthermore a namespace should identify the maintainer, the 1000
standard and the version of that standard. For example the OAGIS namespace identifies 1001
the Open Applications Group, http://www.openapplications.org; the name of the 1002
standard oagis; and the version of the standard 9. Adding these together define the 1003
OAGIS 9.0 namespace as: http://www.openapplications.org/oagis/9 1004

A schema is interdependent upon the schemas that it includes or imports. All of the internal 1005
schemas must affect the versioning of the root schemas. Conversely, imported schema 1006
must effect the version of the root schema.. 1007

[OAGi R 48] 1008

 [UN/CEFACT R 35] Every version of a defined or imported schema module other than 1009
internal schema modules MUST have its own unique namespace. 1010

OAGi adopts this rule without modification. 1011

All of OAGIS is defined in the single namespace for the given release. As such each BOD 1012
is defined in this namespace and all of the internal schema modules (Components, Fields, 1013
Meta, and Nouns) are also defined in this single namespace and included. 1014

Furthermore, OAGi follows a modular approach that allows for additions to be made such 1015
that the additions maintain backward compatibility. By doing this minor releases of OAGIS 1016
maybe defined using the same namespace, where the major release version is identified in 1017
the namespace, but not the minor release indicators. This is described further in the 1018
Versioning section below and the OAGi Versioning Standard. 1019

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

39

A given namespace is associated with each major release and does not require a new 1020
namespace for each minor release. This further enables the reuse of existing code and 1021
localizes changes to the context of extensions. 1022

[OAGi R 49] 1023

 [UN/CEFACT R 36] UN/CEFACT published namespace declarations or contents MUST 1024
never be changed unless such change does not break backward compatibility. 1025

OAGi adopts this rule without modification. 1026

 1027

[OAGi R 50] 1028

All extensions to OAGIS SHOULD use either an Overlay of OAGIS or a UserArea extension 1029
of OAGIS. 1030

Other forms of modifications to the OAGIS specification result in derivative versions that 1031
defeat the fundamental intent of a standard. 1032

2.5 .4 Namespace Uniform Resource Identifiers 1033

OAGi recommends that namespaces be resolvable to a persistent location to find more 1034
information about the schema being defined. Uniform Resource Indicators (URIs) are used 1035
to identify a namespace. Valid URIs include: Uniform Resource Locators (URLs) and 1036
Uniform Resource Names (URNs). After reviewing the two options OAGi determined: 1037
URLs are resolvable and are as persistent as the organizations that maintain the schemas; 1038
URNs are not resolvable and identify a name for a given standard that is typically 1039
associated with the organization that maintains the standard. When that name changes the 1040
URN and URL change; Therefore, URNs and URLs were determined to be equally 1041
persistent. Since URLs are resolvable, OAGi choose to use URLs. 1042

[OAGi R 51] 1043

 [UN/CEFACT R 37] UN/CEFACT namespaces MUST be defined as Uniform Resource 1044
Names 1045

OAGi adopts the intent of this rule but modifies the actual implementation. 1046

OAGi namespaces MUST be defined as Uniform Resource Locators 1047

In order to ensure consistency, each OAGi namespace will have the same general 1048
structure. The following is an example of this structure: 1049

<URL>\<Standard>\<Major Release> 1050

Where : 1051

<URL> = the URL of the Open Applications Group, 1052
http://www.openapplications.org. 1053

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

40

<Standard> = the name of the standard being defined. In the case of OAGIS, it is 1054
oagis 1055

<Major Release> = the major release of the standard that is being defined. In the 1056
case of OAGIS 9.0, it is 9. 1057

OAGi does not change the namespace either a draft or a standard releases. Instead, OAGi 1058
uses the schemaLocation to point to the appropriate repository. Again, this ensures the 1059
maximum amount of reusability of object classes for implementations that may have 1060
started prototyping work with draft releases. 1061

[OAGi R 52] 1062

 [UN/CEFACT R 38] The names for namespaces MUST have the following structure while 1063
the schema is at draft status: 1064
urn:un:unece:uncefact:<schematype>:draft:<name>:<major> 1065

Where : 1066

• schematype = a token identifying the type of schema module: data | process | 1067
codelist | identifierlist | documentation 1068

• name = the name of the module (using upper camel case) 1069

• major = the major version number. Sequentially assigned, first release starting with the 1070
number 1. 1071

OAGi relaxes this rule. 1072

 1073

[OAGi R 53] 1074

 [UN/CEFACT R 39] The namespace names for schemas holding specification status MUST 1075
be of the form: 1076
urn:un:unece:uncefact:<schematype>:standard:<name>:<major> 1077

Where : 1078

• schematype = a token identifying the type of schema module: data | process | 1079
codelist | identifierlist | documentation 1080

• name = the name of the module (using upper camel case) 1081

• major = the major version number. Sequentially assigned, first release starting with the 1082
number 1. 1083

OAGi relaxes this rule. 1084

 1085

[OAGi R 54] 1086

Each OAGi namespace MUST have the following structure: 1087
<URL>/<standard>/<major>/[<overlayname>|<substandardname>]/[<overlay1088
major>|<substandardmajor>]] 1089

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

41

For example OAGIS and OAGIS Overlays use the following: 1090
http://www.openapplications.org/oagis/<major>/[<overlayname>]/[<over1091
laymajor>] 1092

Where : 1093

• <URL> = the URL of the Open Applications Group, 1094
http://www.openapplications.org 1095

• <standard> = the name of the standard being defined. In the case of OAGIS, it is oagis 1096

• <major> = the major release of the standard that is being defined. In the case of OAGIS 1097
9.0, it is 9. 1098

• overlayname = name of the overlay, this is typically the name of the organization and or 1099
project of the overlay. The overlayname MAY be of the form organization/project. 1100

• substandardname = identifies a sub portion of the standard for example the OAGIS 1101
implementation of the codelist. 1102

• overlaymajor = the major version number of the overlay, sequentially assigned, first 1103
release starting with the number 1. 1104

• Substandardmajor = the major version number of the substandard, sequentially 1105
assigned, first release starting with the number 1. 1106

For example: 1107

http://www.openapplications.org/oagis/9/aiag/ivi/1 1108

2.5 .5 Namespace Constraint 1109

In order to be consistently defined OAGi namespaces like OAGIS must be created and 1110
assigned by OAGi. Likewise any extension namespaces must be created and assigned by 1111
the organization that is extending OAGIS, or their agents. 1112

[OAGi R 55] 1113

 [UN/CEFACT R 40] UN/CEFACT namespaces MUST only contain UN/CEFACT developed 1114
schema modules. 1115

OAGi adopts this rule with editorial changes only. 1116

OAGi namespaces MUST only contain OAGi developed schema modules. 1117

 1118

[OAGi R 56] 1119

OAGi extensions must be made in a namespace that reflects the name of the organization 1120
that is responsible for the extensions being made to OAGIS. These schema modules MUST 1121
only contain content developed by these organization or their agents. 1122

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

42

2.5 .6 Schema Namespace Tokens 1123

Each namespace used by OAGi will have its own namespace token. This token is used as 1124
an alias when referencing the namespace in element, and type names. The list of these 1125
token is provided in Table 2-2 earlier in this document. 1126

2.6 Schema Location 1127

Schema locations are required to be in the form of a URI scheme. Since the purpose of the 1128
schema location is to provide a reference point in which to obtain access to a schema 1129
definition, it must be resolvable. Therefore, most schema locations are URLs, which are 1130
the resolvable form of a URI. 1131

During deployment the schema definitions referenced by the schema location may need to 1132
reside in many different places. It is not practical to provide an Internet address in this URL 1133
for all implementations to resolve at runtime. Especially considering that many of these 1134
implementations are critical to the operations of the organizations that use them, where 1135
there are millions of exchanges of information an hour not to mention in a day. 1136

In order to facilitate this, the schema locations provided by OAGi in OAGIS are normative 1137
and relative referenced schema locations for the XML schema references. The initial 1138
reference to the defining XSD in the XML instance must provide the persistent location to 1139
find the root or BOD schema. The remaining references within the schema set use 1140
normative and relative reference URLs. This allows OAGIS to be deployed via an Internet, 1141
Intranet, locally on the machine, or in a database repository. This also supports Unix, 1142
Windows, or Mainframe based servers implementations. Using any other form for the URI 1143
in the schema location limits the possibilities for implementation by the end user. 1144

[OAGi R 57] 1145

 [UN/CEFACT R 41] The general structure for schema location MUST be: 1146
http://www.unece.org/uncefact/<schematype>/<name>_<major>.<minor>.[<1147
revision>]_[<status>].xsd 1148

Where: 1149

• schematype = a token identifying the type of schema module: data | process | 1150
codelist | identifierlist | documentation 1151

• name = the name of the module (using upper camel case) 1152

• major = the major version number, sequentially assigned, first release starting with the 1153
number 1. 1154

• minor = the minor version number within a major release, sequentially assigned, first 1155
release starting with the number 0. 1156

• revision = sequentially assigned alphanumeric character for each revision of a minor 1157
release. Only applicable where status = draft. 1158

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

43

• status = the status of the schema as: draft | standard 1159

OAGi relaxes this rule. 1160

 1161

[OAGi R 58] 1162

The schema location in an XML instance document when referring to an OAGIS BOD MUST 1163
be of the form: 1164

<URL>/oagis/<major>.<minor>/BODs/<schemaform>/<name>.xsd. 1165

Where: 1166

• URL = is the URL of the location that will resolve the reference to XSD file. This maybe 1167
the Open Applications Group Web site or it may be an implementation specific URL 1168
where OAGIS is stored. 1169

• major = the major version number, sequentially assigned, first release starting with the 1170
number 1. 1171

• minor = the minor version number within a major release, sequentially assigned, first 1172
release starting with the number 0. 1173

• schemaform = the form of the schema: developer | standalone 1174

• name = the name of the BOD or root schema. 1175

 1176

[OAGi R 59] 1177

The schema location in an XML instance document when referring to an OAGIS Overlay 1178
BOD MUST be of the form: 1179

<URL>/oagis/<major>>.<minor>/<overlayname>/<overlaymajor>.<overlaymi1180
nor>/BODs/[<schemaform>]/<name>.xsd. 1181

Where: 1182

• URL = is the URL of the location that will resolve the reference to XSD file. This maybe 1183
the Open Applications Group Web site or it may be an implementation specific URL 1184
where OAGIS and the Overlay is stored. 1185

• major = the major version number of OAGIS, sequentially assigned, first release starting 1186
with the number 1. 1187

• minor = the minor version number within a major release, sequentially assigned, first 1188
release starting with the number 0. 1189

• overlayname = name of the overlay, this is typically the name of the organization and or 1190
project of the overlay. The overlayname MAY be of the form organization\project. 1191

• overlaymajor = the major version number of the overlay, sequentially assigned, first 1192
release starting with the number 1. 1193

• overlayminor = the minor version number within a major release of the overlay, 1194
sequentially assigned, first release starting with the number 0. 1195

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

44

• schemaform = the form of the schema: developer | standalone 1196

• name = the name of the BOD or root schema. 1197

 1198

[OAGi R 60] 1199

 [UN/CEFACT R 42] Each xsd:schemaLocation attribute MUST contain a persistent and 1200
resolvable URL. 1201

OAGi adopts the intent of this rule but modifies that actual implementation. 1202

Each xsd:schemaLocation attribute in an XML Instance MUST contain a persistent and 1203
resolvable URL. 1204

 1205

[OAGi R 61] 1206

Each xsd:schemaLocation attribute in an XSD document SHOULD use relative reference 1207
paths that are normative. 1208

 1209

[OAGi R 62] 1210

 [UN/CEFACT R 43] Each xsd:schemaLocation attribute declaration URL MUST contain 1211
an absolute path. 1212

OAGi adopts the intent of this rule but modifies that actual implementation. 1213

Each xsd:schemaLocation attribute declaration in an XML instance document MUST 1214
contain an absolute path. 1215

2.7 Versioning 1216

The one constant in the world is change. This is never more evident than in today’s 1217
business world, where needs and requirements are constantly changing. The best 1218
practices for dealing with these changes require flexiblity while identifying when the 1219
changes affect compatibility. 1220

Instance of BODs are said to be compatible if they can be validated by both the source and 1221
destination Schemas. This is further defined below. 1222

The OAGi versioning schema embraces compatibility as an enabling factor for 1223
implementation. It is critical to capture what has changed between each version or release. 1224
It is also important to identify what are major changes and what are minor changes. OAGi 1225
uses compatibility as the deciding factor as to what is a major release versus a minor 1226
release. In other words if, the changes break compatibility it is a major release. Likewise, if 1227
the changes are simply adding new optional content that does not break compatibility then 1228
the release is a minor release. 1229

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

45

OAGi uses this distinction in the namespaces as well. Since a major release by its nature 1230
breaks compatibility then the namespace reflect that and enforce the incompatibility. Also 1231
the change to the namespace further breaks compatibility. Since minor releases do not 1232
break compatibility, and changing the namespace would break compatibility only to 1233
reference the minor change, OAGi does not change the namespace for any minor 1234
releases. 1235

The OAGi Versioning Policy describes the OAGi approach to versioning in more detail. 1236

2.7 .1 Version Compatibility 1237

There are two types of version compatibility: backward compatibility and forward 1238
compatibility. XML.com article by David Orchard December 03, 2003 describes these as 1239
follows: 1240

“Backwards compatibility means that a new version of a receiver can be rolled out 1241
so it does not break existing senders. This means that a sender can send an old 1242
version of a message to a receiver that understands the new version and still have 1243
the message successfully processed. 1244

Forwards compatibility means that an older version of a receiver can consume 1245
newer messages and not break. Of course the older version will not implement any 1246
new behavior, but a sender can send a newer version of a message and still have 1247
the message successfully processed. 1248

In other words, backwards compatibility means that existing senders can use 1249
services that have been updated, and forwards compatibility means that newer 1250
senders can continue to use existing services. 1251

Forwards-compatible changes typically involve adding optional element(s) and/or 1252
attribute(s). The costs associated with introducing changes that are not backwards- 1253
or forwards-compatible are often very high, typically requiring deployed software to 1254
be updated to accommodate the newer version.” 1255

A key point from the excerpt above is that the cost of incompatible changes is often high 1256
due to the need to modify deployed solutions. 1257

2.7 .2 Major Versions 1258

A major version in an OAGi schema module constitutes non-backward compatible 1259
changes, as described above. These changes major consist of, but not limited to: 1260

• Changing element, type, and attribute names 1261

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

46

• Changing the structures so as to break polymorphic processing capabilities 1262

• Deleting or adding mandatory elements or attributes 1263

• Removing or changing values in enumerations. 1264

Major release numbers are indicated in the namespace declaration as defined previously 1265
declared. 1266

[OAGi R 63] 1267

[UN/CEFACT R 44] Every schema major version namespace declaration MUST have the 1268
URI of: urn:un:unece:uncefact:<schematype>:<status>:<name>:<major> 1269

OAGi adopts the intent of this rule but modifies the actual implementation. 1270

Every schema major version namespace declaration MUST have a URI of the form: 1271
http://www.openapplications.org/<standard>/<major>/[<overlayname>|<s1272
ubstandardname>]/[<overlaymajor>|<substandardmajor>] 1273

 1274

[OAGi R 64] 1275

 [UN/CEFACT R 45] Every UN/CEFACT XSD Schema and schema module major version 1276
number MUST be a sequentially assigned incremental integer greater then zero. 1277

OAGi adopts this rule with editorial changes only. 1278

Every XSD Schema and schema module major version number MUST be a sequentially 1279
assigned incremental integer greater than zero. 1280

2.7 .3 Minor Versions 1281

Within a major release of an OAGi schema module there can be a series of minor releases 1282
that are all compatible. All minor releases are compatible as long as they are contained 1283
within a single major release. This allows the user to determine what releases are 1284
compatible and which can be used together. Minor versions incremented when compatible 1285
changes occur. These may consist of but are not limited to the following: 1286

• Adding optional elements or attributes 1287

• Adding values to enumerations 1288

[OAGi R 65] 1289

 [UN/CEFACT R 46] Minor versioning MUST be limited to declaring new optional XSD 1290
constructs, extending existing XSD constructs and refinements of an optional nature. 1291

OAGi adopts this rule without modification. 1292

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

47

Minor version numbers are NOT reflected in the namespace declaration because changing 1293
the namespace breaks compatibility. Anytime a namespace is changed the code that 1294
process that namespace must also change to address the new namespace whether the 1295
content changed or not. 1296

[OAGi R 66] 1297

 [UN/CEFACT R 47] Every UN/CEFACT XSD Schema minor version MUST have the URI of: 1298
urn:un:unece:uncefact:cc:schema:<name>:<major> 1299

OAGi relaxes this rule. 1300

 1301

[OAGi R 67] 1302

Every minor version MUST use the same namespace as the major version to which it is 1303
associated. 1304

Like major versions, minor versions numbers should be based on a logical progression to 1305
ensure the understanding of the approach and guarantee consistency in representation. 1306
The minor version number is a sequentially assigned incremental integer greater than 1307
zero.. 1308

Minor versions changes are not allowed to break compatibility with previous versions as 1309
described earlier in this document. 1310

[OAGi R 68] 1311

 [UN/CEFACT R 48] For UN/CEFACT minor version changes, the name of the schema 1312
construct MUST NOT change. 1313

OAGi adopts this rule with editorial changes only. 1314

For OAGi minor version changes, the name of the schema construct MUST NOT change. 1315
 1316

[OAGi R 69] 1317

[UN/CEFACT R 49] Changes in minor versions MUST NOT break semantic compatibility 1318
with prior versions. 1319

OAGi adopts this rule without modification. 1320

For a given namespace, the parent major release and subsequent minor releases create a 1321
relationship. In OAGIS each minor release utilizes the same namespace as the parent 1322
major release. The first minor release must incorporate the parent major release, and each 1323
subsequent release must incorporate the previous minor release. 1324

[OAGi R 70] 1325

 [UN/CEFACT R 50] UN/CEFACT minor version schema MUST incorporate all XML 1326
constructs from the immediately preceding major or minor version schema. 1327

OAGi adopts this rule with editorial changes only. 1328

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

48

Minor version schema MUST incorporate all XML constructs from the immediately preceding 1329
major or minor version schema. 1330

3.0 GENERAL XML SCHEMA CONVENTIONS 1331

XML Schema includes many different concepts. Some are generally supported by tools 1332
and some are not or only partially supported by tools. The OAGi Practical Guide to XML 1333
Schema provides a detailed review of the constructs that should be implemented in order 1334
to practically claim support for XML Schema. This section identifies the rules associated 1335
with these constructs as they are used within OAGi and particular OAGIS 9.0. 1336

3.1 Schema Construct 1337

XML Schema includes many different constructs. OAGIS uses those constructs that are 1338
considered consistently implemented by tools. 1339

[OAGi R 71] 1340

 [UN/CEFACT R 51] The xsd:elementFormDefault attribute MUST be declared and its 1341
value set to “qualified”. 1342

OAGi adopts this rule without modification. 1343

 1344

[OAGi R 72] 1345

[UN/CEFACT R 52] The xsd:attributeFormDefault attribute MUST be declared and its 1346
value set to “unqualified”. 1347

OAGi adopts this rule without modification. 1348

 1349

[OAGi R 73] 1350

 [UN/CEFACT R 53] The “xsd” prefix MUST be used in all cases when referring to 1351
http://www.w3.org/2001/XMLSchema as follows: 1352
xmlns:xsd=http://www.w3.org/2001/XMLSchema 1353

OAGi adopts this rule with editorial changes only. 1354

The “xsd” prefix MUST be used in all cases when referring to 1355
http://www.w3.org/2001/XMLSchema as follows: 1356
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” 1357

An example of these rules: 1358
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1359
xmlns="http://www.openapplications.org/oagis/9" 1360
targetNamespace="http://www.openapplications.org/oagis/9" 1361

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

49

elementFormDefault="qualified" 1362
attributeFormDefault="unqualified"> 1363

3.1 .1 Constraints on Schema Construction 1364

[OAGi R 74] 1365

 [UN/CEFACT R 54] The xsi prefix SHALL be used where appropriate for referencing 1366
xsd:schemaLocation and xsd:noNamespaceLocation attributes in instance 1367
documents. 1368

OAGi further constrains this rule. 1369

The xsi prefix SHALL only be used where appropriate for referencing 1370
xsd:schemaLocation and xsd:noNamespaceLocation attributes in instance 1371
documents. 1372

 1373

[OAGi R 75] 1374

[UN/CEFACT R 55] xsd:appInfo MUST NOT be used. 1375

OAGi adopts this rule without modification. 1376

 1377

[OAGi R 76] 1378

 [UN/CEFACT R 56] xsd:notation MUST NOT be used. 1379

OAGi adopts this rule without modification. 1380

 1381

[OAGi R 77] 1382

 [UN/CEFACT R 57] xsd:wildcard MUST NOT be used. 1383

OAGi adopts this rule without modification. 1384

OAGIS uses xsd:any to enable UserArea extensions. This extension allows additional 1385
elements to be added to an instance document without making any modifications to the 1386
XML Schema. 1387

[OAGi R 78] 1388

 [UN/CEFACT R 58] xsd:any element MUST NOT be used. 1389

OAGi relaxes this rule. 1390

xsd:any element MUST NOT be used with the one exception of the UserArea within 1391
OAGIS. 1392

 1393

[OAGi R 79] 1394

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

50

 [UN/CEFACT R 59] xsd:any attribute MUST NOT be used. 1395

OAGi adopts this rule without modification. 1396

 1397

[OAGi R 80] 1398

 [UN/CEFACT R 60] Mixed content MUST NOT be used (excluding documentation). 1399

OAGi adopts this rule without modification. 1400

OAGIS 9.0 does not use substitutionGroups within the core Schemas. However 1401
substitutionGroups are used to enable Overlay extensions. 1402

[OAGi R 81] 1403

 [UN/CEFACT R 61] xsd:substitutionGroup MUST NOT be used. 1404

OAGi relaxes this rule. 1405

xsd:substitutionGroup SHOULD only be used as an extension mechanism to extended the 1406
original definition in order to provide additional contextual requirements. 1407

 1408

[OAGi R 82] 1409

 [UN/CEFACT R 62] xsd:ID/IDREF MUST NOT be used. 1410

OAGi adopts this rule without modification. 1411

 1412

[OAGi R 83] 1413

 [UN/CEFACT R 63] xsd:key/xsd:keyref MUST be used for information association. 1414

OAGi adopts this rule without modification.. 1415

 1416

[OAGi R 84] 1417

 [UN/CEFACT R 64] The absence of a construct or data MUST NOT carry meaning. 1418

OAGi adopts this rule without modification. 1419

3.2 Attribute and Element Declarations 1420

OAGi makes use of both elements and attributes. Primarily elements are used because 1421
they are extensible and attributes are not. Attributes are used for the simple qualification of 1422
an element. Many of the attributes used by OAGIS come directly from the CCTS. While 1423
CCTS does not require the use of attributes, the UN/CEFACT NDR does. 1424

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

51

3.2 .1 Attr ibutes 1425

3.2.1.1 Usage of Attributes 1426

User declared attributes can be used to convey supplementary components of core 1427
component types. The intent of the attributes as used by OAGi is to qualify the 1428
associated elements. Built-in xsd:attributes will be used as described in this 1429
document. User declared attributes can represent different types of values. The values 1430
may be variable information or can be based on code lists. 1431

[OAGi R 85] 1432

 [UN/CEFACT R 65] User declared attributes MUST only be used to convey core component 1433
type (CCT) supplementary component information. 1434

OAGi relaxes this rule. 1435

 1436

[OAGi R 86] 1437

 [UN/CEFACT R 66] An attribute of a supplementary component with variable information 1438
MUST be based on the appropriate built-in XSD data type. 1439

OAGi adopts the intent of this rule but modifies the actual implementation. 1440

An attribute with variable information MUST be based on the appropriate built-in XSD data 1441
type. 1442

 1443

[OAGi R 87] 1444

 [UN/CEFACT R 67] An attribute of a supplementary component which represents codes 1445
MUST be based on the xsd:simpleType of the appropriate code list. 1446

OAGi adopts this rule without modification. 1447

 1448

[OAGi R 88] 1449

 [UN/CEFACT R 68] An attribute of a supplementary component which represents identifiers 1450
MUST be based on the xsd:simpleType of the appropriate identifier scheme. 1451

OAGi relaxes this rule. 1452

3.2.1.2 Constraints on Attribute Declarations 1453

The absence of an element in an XML instance does not have meaning. It may indicate 1454
the information is unknown or not applicable, or the element may be absent for some 1455
other reason. XML Schema does provide a construct where an element may be 1456

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

52

transferred with no content, but still use its attributes and carry semantic meaning. This 1457
is possible by using the nillable attribute. 1458

[OAGi R 89] 1459

 [UN/CEFACT R 69] The xsd:nillable attribute MUST NOT be used. 1460

OAGi adopts this rule without modification. 1461

3.2 .2 Elements 1462

Elements are declared for document level message assembly, following the Core 1463
Component approach. Elements are generally used by the Business Object Documents 1464
(BODs), although, they may be used for lower level message assembly to 1465
communicate information about components including field level information. 1466

3.2.2.1 Element Declaration 1467

[OAGi R 90] 1468

 [UN/CEFACT R 70] Empty elements MUST NOT be used. 1469

OAGi adopts this rule without modification. 1470

 1471

[OAGi R 91] 1472

 [UN/CEFACT R 71] Every BBIE leaf element delcaration MUST be of the 1473
udt:UnqualifiedDataType or qdt:QualifiedDataType that represents the The 1474
xsd:type of each leaf element declaration MUST be of the data type of its source business 1475
information entity (BBIE) ccts:DataType 1476

OAGi adopts this rule without modification. 1477

3.2.2.2 Constraints on Element Declarations 1478

[OAGi R 92] 1479

 [UN/CEFACT R 72] The xsd:all element MUST NOT be used. 1480

OAGi adopts this rule without modification. 1481

 1482

[OAGi R 93] 1483

All elements MUST be declared using named types. 1484

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

53

3.3 Type Definitions 1485

In order to maximize reusability all elements must be declared using named types. This 1486
allows the type definitions to be reused across multiple elements and to be extended 1487
where appropriate. 1488

[OAGi R 94] 1489

 [UN/CEFACT R 73] All type definitions MUST be named. 1490

OAGi adopts this rule without modification. 1491

 1492

[OAGi R 95] 1493

 [UN/CEFACT R 74] Data type definitions MUST NOT duplicate the functionality of an 1494
existing data type definition. 1495

OAGi adopts this rule without modification. 1496

3.3 .1 Simple Type Definit ions 1497

OAGIS uses Core Component Technical Specification (CCT) for all end level elements and 1498
attributes where they can be applied. This is done by using the representations identified in 1499
the UDT and QDT data types for the basis of these OAGIS defined types. In doing this 1500
OAGIS 9.0 does not use any XML Schema simpleTypes directly. 1501

The OAGIS representations of the CCT, UDT, QDT, and CodeList are required to define 1502
the representation by using the XML Schema simpleTypes, so that they satisfy the 1503
business requirements. ComplexTypes are only used when a simpleType does not satisfy 1504
these business requirements. 1505

OAGIS also uses simple types to define the intermediary types for code lists that are based 1506
on the appropriate code list simple type. 1507

Simple Type in the Unqualified Data Type Schema Module 1508
 <xsd:simpleType name="DateTimeType"> 1509
 <xsd:restriction base="xsd:dateTime"/> 1510
 </xsd:simpleType> 1511

3.3 .2 Complex Type Definit ions 1512

User defined complex types may be used when XML Schema built-in simple types do not 1513
satisfy the business requirements or when an aggregate business information entity (ABIE) 1514
must be defined. 1515

OAGIS uses complex types to define: 1516

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

54

1. The OAGIS 9.0 representation of the UN/CEFACT artifiacts for: 1517

o ACC in the ReusableAggregateCoreComponent.xsd and 1518

o ABIEs in the ReusableAggregateBusinessInformationEntity.xsd 1519

o CodeLists 1520

2. To define the OAGIS intermediary types for: 1521

o CodeLists 1522

o ABIEs 1523

3. To define OAGIS specific: 1524

o Components or ABIEs 1525

o Nouns 1526

o Verbs 1527

o BODs 1528

o Base types in which the above inherit from. 1529

Complex type of an object class AccountType: 1530

 1531
<xsd:complexType name="AccountType"> 1532

<xsd:sequence> 1533
 <xsd:element name="ID" type="udt:IdentifierType" 1534
minOccurs="0" maxOccurs="unbounded"/> 1535
 <xsd:element name="Text" type="udt:TextType" minOccurs="0" 1536
maxOccurs="unbounded"/> 1537
 <xsd:element name="Code" type="udt:CodeType" minOccurs="0" 1538
maxOccurs="unbounded"/> 1539
 <xsd:element name="DateTime" type="udt:DateTimeType" 1540
minOccurs="0" maxOccurs="unbounded"/> 1541
 <xsd:element name="Status" type="rcm:StatusType" 1542
minOccurs="0" maxOccurs="unbounded"/> 1543
 <xsd:element name="Country" type="rcm:CountryType" 1544
minOccurs="0" maxOccurs="unbounded"/> 1545
 <xsd:element name="Person" type="rcm:PersonType" 1546
minOccurs="0" maxOccurs="unbounded"/> 1547
 <xsd:element name="Organization" 1548
type="rcm:OrganizationType" minOccurs="0" maxOccurs="unbounded"/> 1549
 </xsd:sequence> 1550
</xsd:complexType> 1551

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

55

3.4 Use of Extension and Restriction 1552

IOAGIS uses an object model where the base concepts are identified and reused where 1553
appropriate. 1554

Looking at the features of XML Schema OAGi made the conscious decision to use 1555
derivation by extension and not to use derivation by restriction for complex types. This was 1556
based on discussions with W3C and an in depth understanding of how each works. 1557

3.4 .1 Derivation by Extension 1558

OAGIS is able to inherit through derivation by extension from base types as needed. For 1559
example in business level application integration there are several base communications 1560
that are document based like a PurchaseOrder, and an Invoice. At the simple level each 1561
has a concept of a header and a line or details. Beyond this the headers have a document 1562
identifier and a timestamp for the document. The line or details each have a line number 1563
identifier. 1564

OAGIS reuses these definitions as a form of inheritance to avoid redundancy. 1565

[OAGi R 96] 1566

[UN/CEFACT R 75] xsd:extension MUST only be used in the cct:CoreComponentType 1567
schema module and the udt:UnqualifiedDataType schema module. When used it 1568
MUST only extend a built-in XSD datatype. 1569

OAGi relaxes this rule. 1570

xsd:extension is used to extend the content of an existing type to meet the needs of 1571
further requirements for a given object or composite object. 1572

OAGIS Overlays make use of derivation by extension in order to extend a given OAGIS 1573
object type to meet the new requirements identified. 1574

3.4 .2 Derivation by Restr iction 1575

Derivation by restriction is only used for simple types in the OAGIS representations of the 1576
UN/CEFACT UDT, QDT, and Code Lists. These may include OAGIS or OAGIS Overlay 1577
code lists as needed. 1578

Derivation by restriction for complex types is considered by many to be broken. In that it 1579
simply makes a copy of the original type and begins to remove content. Additionally, XML 1580
Schema does not allow derivation by restriction across namespaces. 1581

For derivation by restriction to be practical, changes to the core Schema specifications are 1582
required or tool vendors must manage the changes more efficiently. 1583

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

56

[OAGi R 97] 1584

[UN/CEFACT R 76] When xsd:restriction is applied to a xsd:simpleType or 1585
xsd:complexType the derived construct MUST use a different name. 1586

OAGi further constrains this rule. 1587

When xsd:restriction is applied to a xsd:simpleType the derived construct MUST 1588
use a different name. xsd:restriction MUST only be applied to a xsd:simpleType. 1589

3.5 Annotation 1590

OAGi uses the xsd:annotation to provide documentation per the UN/CEFACT NDR 1591
description of documentation. This is used in OAGIS 9.0 in the CCT, UDT and QDT 1592
modules. The other schema modules in OAGIS 9.0 capture a description of the element or 1593
type and its intended use. 1594

Future releases of OAGIS all schema modules will make use of the UN/CEFACT 1595
documentation as described in UN?CEFACT NDR 6.5.1 Documentation. 1596

[OAGi R 98] 1597

[UN/CEFACT R 77] Each UN/CEFACT defined or declared construct MUST use the 1598
xsd:annotation element for required CCTS documentation. 1599

OAGi adopts the intent of this rule but modifies the actual implementation. 1600

Each defined or declared construct MUST use the xsd:annotation element for 1601
documentation. 1602

 1603

[OAGi R 99] 1604

Each xsd:annotation MUST use the xsd:documentation element for documentation. 1605

 1606

[OAGi R 100] 1607

Each xsd:documentation MUST use the source attribute with the following value: 1608
“http://www.openapplications.org/oagis” 1609

For example: 1610
<xsd:complexType name="SenderType"> 1611
 <xsd:annotation> 1612
 <xsd:documentation 1613
source="http://www.openapplications.org/oagis/9"> 1614

Identifies the sender of the given BOD instance. 1615
 </xsd:documentation> 1616

 </xsd:annotation> 1617
</xsd:complexType> 1618

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

57

4.0 SCHEMA MODULES 1619

OAGIS 9.0 includes various schema modules all of which serve different roles in building 1620
OAGIS content. These schema modules are consistent with the schema modules defined 1621
by the UN/CEFACT NDR as describe previousily in this document. 1622

4.1 BOD 1623

The BOD schema serves as the container for all schema content that is required to fulfill an 1624
exchange of business information. The BOD schema is defined in the OAGIS 9.0 1625
namepace – http:\\www.openapplications.org\oagis\9. 1626

The Developer BOD schema modules include references to the internal schema modules 1627
(Nouns, Components, Fields, and Meta) as needed. It may also import external schemas 1628
modules as needed, as is the case for Overlay BODs that extend an existing OAGIS BOD. 1629
The Standalone BODs schema modules include directly in the schema module all of the 1630
artifacts required for the given BOD for the exchange of business information. 1631

4.1 .1 Schema Construct 1632

Each Developer BOD schema must be defined in a standard format in order to ensure 1633
consistency and ease of use. The format is shown in Figure 8. 1634

 1635
<?xml version="1.0" encoding="utf-8"?> 1636
<!-- 1637
 1638
** OAGIS® Revision: 9.0 ** 1639
** Date: 08 April 2005 ** 1640
** Copyright 1998-2005, All Rights Reserved ** 1641
 1642
This is an OAGIS® BOD XML Schema (XSD) Definition. 1643
 1644
License information for this file is provided in the file **2005 OAGi 1645
License Agreement.txt** that is provided with this download package. 1646
 1647
For support, more information, or to report implementation bugs, please 1648
contact the Open Applications Group at xml@openapplications.org. 1649
 1650
 XML Schema 1651
 1652
 Name: \OAGIS\9.0\BODs\Developer\NameOfTheBOD.xsd 1653
--> 1654
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1655
xmlns="http://www.openapplications.org/oagis/9" 1656

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

58

targetNamespace="http://www.openapplications.org/oagis/9" 1657
elementFormDefault="qualified" attributeFormDefault="unqualified"> 1658
 1659
 <xsd:include schemaLocation="..See Nouns.. "/> 1660
 1661
 <xsd:element name="BODRootElement" type="BODRootElementType"> 1662
 </xsd:element> 1663
 1664
 <xsd:complexType name="BODRootElementType"> 1665
 <xsd:complexContent> 1666
 <xsd:extension base="BusinessObjectDocumentType"> 1667
 <xsd:sequence> 1668
 <xsd:element name="DataArea" 1669
type="BODRootElementDataAreaType"> 1670
 1671
 </xsd:element> 1672
 </xsd:sequence> 1673
 </xsd:extension> 1674
 </xsd:complexContent> 1675
 </xsd:complexType> 1676
 <xsd:complexType name="BODRootElementDataAreaType"> 1677
 <xsd:sequence> 1678
 <xsd:element ref="Verb"/> 1679
 <xsd:element ref="Noun" maxOccurs="unbounded"/> 1680
 </xsd:sequence> 1681
 </xsd:complexType> 1682
</xsd:schema> 1683

Figure 8 - Structure of the Developer BOD Schema Module 1684

Each Standalone BOD schema module that is a part of OAGIS 9.0 is generated by an 1685
application available from the Open Applications Group from the Developer BOD schema 1686
module. The resulting schema module has a standard structure that is followed. This 1687
structure is shown in Figure 9. 1688

 1689
 <?xml version="1.0" encoding="utf-8"?> 1690
<!-- 1691
 1692
** OAGIS® Revision: 9.0 ** 1693
** Date: 08 April 2005 ** 1694
** Copyright 1998-2005, All Rights Reserved ** 1695
 1696
This is an OAGIS® BOD XML Schema (XSD) Definition. 1697
 1698
License information for this file is provided in the file **2005 OAGi 1699
License Agreement.txt** that is provided with this download package. 1700
 1701
For support, more information, or to report implementation bugs, please 1702
contact the Open Applications Group at xml@openapplications.org. 1703
 1704
 XML Schema 1705
 1706
 Name: \OAGIS\9.0\BODs\Standalone\NameOfTheBOD.xsd 1707

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

59

--> 1708
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1709
xmlns="http://www.openapplications.org/oagis/9" 1710
targetNamespace="http://www.openapplications.org/oagis/9" 1711
elementFormDefault="qualified" attributeFormDefault="unqualified"> 1712
 1713
 <xsd:import ...of all namespaces used by the Standalone BOD.../> 1714
 1715
 <xsd:attributeGroup …of all attributeGroups used…/> 1716
 1717
 <xsd:complexType …of all complexTypes used…/> 1718
 1719
 <xsd:element …of all elements used…/> 1720
 1721
 <xsd:group …of all groups used…/> 1722
 1723
 xsd:simpleType …of all simpleTypes used…/> 1724

</xsd:schema> 1725

Figure 9 - Structure of the Standalone BOD Schema Module 1726

4.1 .2 Namespace Scheme 1727

All BODs published in OAGIS 9.0 use the OAGIS 9.0 namespace, 1728
http://www.openapplications.org/oagis/9. Future releases of OAGIS may include additional 1729
namespaces to identify the different domains that OAGIS covers. 1730

[OAGi R 101] 1731

[UN/CEFACT R 77] The root schema module MUST be represented by a unique token. 1732

OAGi relaxes this rule. 1733

 1734

[OAGi R 102] 1735

A BOD schema module MUST be defined in the OAGIS Namespace in the case of OAGIS. In 1736
the case of an Overlay of OAGIS the BOD schema module must be defined in a different 1737
namespace that corresponds to the Overlay. 1738

 1739

OAG I - OAGIS 9 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

 1740

5.0 OAGIS 9.0 ARCHITECTURE 1741

 1742

5.1 Design Considerations for OAGIS 9.0 1743

 1744

5.1 .1 Address Non-Determinism 1745

Non-determinism can roughly be defined as a situation where, upon 1746
encountering an element in an instance document, it is ambiguous 1747
which path was taken in the schema document. 1748

Ninety percent of the instances of OAGIS non-determinism occur with how earlier 1749
versions of OAGIS segments were represented, due mostly to limitations of XML 1750
DTDs. A deeper explanation of this problem's basis in type theory is beyond the 1751
scope of this document. Suffice it to say that element non-determinism has been a 1752
thorn in the side of many OAGIS users. 1753

5.1.1.1 The Non-Determinism Problem in a Nutshell 1754

In prior versions of OAGIS, fields that relied on segments were named based on the 1755
intended type of a field (e.g., "DateTime"), not based on the actual name of the 1756
thing being described (e.g., "NeedDelivery"). What would have been the natural 1757
name of the field was instead buried in a "qualifier" attribute. So, instead of modeling 1758
the NeedDelivery field of a PurchaseOrderLine as 1759

<PurchaseOrderLine> 1760
 1761

<NeedDelivery> </ NeedDelivery> 1762
 1763

</PurchaseOrderLine> 1764

 1765

it was modeled as 1766

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

61

<PurchaseOrderLine> 1767
 1768

<DateTime qualifier="NeedDelivery"> </DateTime> 1769
 1770

</PurchaseOrderLine> 1771

This was one of the few ways that DTDs could impose the needed DateTime 1772
structure on the NeedDeliveryBy field, so that parsers could do some (minimal) 1773
checking of the content. 1774

The problem arose when more than one field of type DateTime was needed in a 1775
given element model (e.g., more than one DateTime child of a PurchaseOrderLine): 1776

<PurchaseOrderLine> 1777
 1778

<DateTime qualifier="NeedDelivery"> </DateTime> 1779
 1780

<DateTime qualifier="PromisedDelivery"> </DateTime> 1781
 1782

</PurchaseOrderLine> 1783

The non-determinism exists because there are two different DateTime elements in 1784
the content of the PurchaseOrderLine . When the parser sees this and can't 1785
distinguish one from the other, it raises this as a warning. Furthermore, since the 1786
parse cannot distinguish one from the other, there is no way for it to require that, e.g., 1787
a NeedDelivery is required and a PromisedDelivery is optional. 1788

The outcome of this is that, prior OAGIS 8.0, OAGIS designers were limited in what 1789
they could express in a given element, and XML parsers were limited in what 1790
structural integrity they could enforced. 1791

5.1 .2 Addressing the Non-Determinism 1792

The problem is addressed by promoting the qualifier's value to being (part of) the 1793
element's name, e.g., 1794

<NeedDelivery> </ NeedDelivery> 1795

and by defining the element's model (type). 1796

<element name="NeedDelivery" type="DateTime"> </element> 1797
 1798

 OAGIS 9 . 0 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

62

Now, rather than naming elements according to their types, elements are named 1799
according to their primary meaning, purpose, or function. Thus, there will no longer 1800
be an Amount(Extended)(T). Instead, the element will be named something like a 1801
required "TotalPrice" of type "Amount."3 Furthermore, there can also be an optional 1802
"AdditionalCost" of type "Amount." 1803

With XML Schema's relatively advanced type system, the context of the TotalPrice 1804
element and the binding, in the schema, of TotalPrice to the type Amount is all that 1805
are needed for a validating parser to validate that the content of a TotalPrice element 1806
is indeed an Amount and fits all of the criteria to be a legal Amount. Parsers can not 1807
only distinguish between a TotalPrice and an AdditionalCost, but can enforce that the 1808
former is required and the latter is optional. 1809

3 In all prior OAGIS releases, the practice of shortening field and segment names resulted in
names that were less meaningful that their full equivalents, and often resulted in names that were
inconsistently abbreviated. OAGIS 8.0 instead uses the long names that have long been
associated with each element, as documented in Appendices C and D. For example
AMOUNT(ESTFREIGHT)(T) in previous releases of OAGIS now uses the intended names, e.g.,
EstimatedFreightCharge.

OAG I - OAGIS 9 N A M I NG A ND D E S I G N R UL E S VE R S I O N 0. 8

COP YR IGHT © 1995-2006 OPEN AP PL IC AT IONS GROUP, IN C. ALL R I GHT S R ES ERV ED

 1810

APPENDIX A – OAGI ACCEPTED ACRONYMS AND 1811

ABBREVIATIONS 1812

 1813
Acronyms 1814
BOD Business Object Document 1815
BOM Bill of Material 1816
DUNS Data Universal Numbering System 1817
EFT Electronic Funds Transfer 1818
GL General Ledger 1819
HR Human Resources 1820
HTML Hyper Text Markup Language 1821
SCE Supply Chain Execution 1822
UOM Unit of Measure 1823
URI Uniform Resource Identifier 1824
URL Uniform Resource Locator 1825
WIP Work In Process 1826
 1827
Abbreviations 1828
Class Classification 1829
Doc Document 1830
Enum Enumeration 1831
ID Identifier 1832
Ind Indicator 1833
Max Maximum 1834
Min Minimum 1835
Ship Shipment 1836
Sync Synchronize 1837
 1838
Non-Oxford 1839
ABC Classification 1840
Subentity 1841
Subline 1842
 1843
 1844

